Description: Any one-to-one onto function determines an isomorphism with an induced relation S . Proposition 6.33 of TakeutiZaring p. 34. (Contributed by NM, 30-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | f1oiso | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | f1of1 | |
|
3 | df-br | |
|
4 | eleq2 | |
|
5 | fvex | |
|
6 | fvex | |
|
7 | eqeq1 | |
|
8 | 7 | anbi1d | |
9 | 8 | anbi1d | |
10 | 9 | 2rexbidv | |
11 | eqeq1 | |
|
12 | 11 | anbi2d | |
13 | 12 | anbi1d | |
14 | 13 | 2rexbidv | |
15 | 5 6 10 14 | opelopab | |
16 | anass | |
|
17 | f1fveq | |
|
18 | equcom | |
|
19 | 17 18 | bitrdi | |
20 | 19 | anassrs | |
21 | 20 | anbi1d | |
22 | 16 21 | bitrid | |
23 | 22 | rexbidv | |
24 | r19.42v | |
|
25 | 23 24 | bitrdi | |
26 | 25 | rexbidva | |
27 | breq1 | |
|
28 | 27 | anbi2d | |
29 | 28 | rexbidv | |
30 | 29 | ceqsrexv | |
31 | 30 | adantl | |
32 | 26 31 | bitrd | |
33 | f1fveq | |
|
34 | equcom | |
|
35 | 33 34 | bitrdi | |
36 | 35 | anassrs | |
37 | 36 | anbi1d | |
38 | 37 | rexbidva | |
39 | breq2 | |
|
40 | 39 | ceqsrexv | |
41 | 40 | adantl | |
42 | 38 41 | bitrd | |
43 | 32 42 | sylan9bb | |
44 | 43 | anandis | |
45 | 15 44 | bitrid | |
46 | 4 45 | sylan9bbr | |
47 | 46 | an32s | |
48 | 3 47 | bitr2id | |
49 | 48 | ralrimivva | |
50 | 2 49 | sylan | |
51 | df-isom | |
|
52 | 1 50 51 | sylanbrc | |