Metamath Proof Explorer


Theorem f1oiso

Description: Any one-to-one onto function determines an isomorphism with an induced relation S . Proposition 6.33 of TakeutiZaring p. 34. (Contributed by NM, 30-Apr-2004)

Ref Expression
Assertion f1oiso H:A1-1 ontoBS=zw|xAyAz=Hxw=HyxRyHIsomR,SAB

Proof

Step Hyp Ref Expression
1 simpl H:A1-1 ontoBS=zw|xAyAz=Hxw=HyxRyH:A1-1 ontoB
2 f1of1 H:A1-1 ontoBH:A1-1B
3 df-br HvSHuHvHuS
4 eleq2 S=zw|xAyAz=Hxw=HyxRyHvHuSHvHuzw|xAyAz=Hxw=HyxRy
5 fvex HvV
6 fvex HuV
7 eqeq1 z=Hvz=HxHv=Hx
8 7 anbi1d z=Hvz=Hxw=HyHv=Hxw=Hy
9 8 anbi1d z=Hvz=Hxw=HyxRyHv=Hxw=HyxRy
10 9 2rexbidv z=HvxAyAz=Hxw=HyxRyxAyAHv=Hxw=HyxRy
11 eqeq1 w=Huw=HyHu=Hy
12 11 anbi2d w=HuHv=Hxw=HyHv=HxHu=Hy
13 12 anbi1d w=HuHv=Hxw=HyxRyHv=HxHu=HyxRy
14 13 2rexbidv w=HuxAyAHv=Hxw=HyxRyxAyAHv=HxHu=HyxRy
15 5 6 10 14 opelopab HvHuzw|xAyAz=Hxw=HyxRyxAyAHv=HxHu=HyxRy
16 anass Hv=HxHu=HyxRyHv=HxHu=HyxRy
17 f1fveq H:A1-1BvAxAHv=Hxv=x
18 equcom v=xx=v
19 17 18 bitrdi H:A1-1BvAxAHv=Hxx=v
20 19 anassrs H:A1-1BvAxAHv=Hxx=v
21 20 anbi1d H:A1-1BvAxAHv=HxHu=HyxRyx=vHu=HyxRy
22 16 21 bitrid H:A1-1BvAxAHv=HxHu=HyxRyx=vHu=HyxRy
23 22 rexbidv H:A1-1BvAxAyAHv=HxHu=HyxRyyAx=vHu=HyxRy
24 r19.42v yAx=vHu=HyxRyx=vyAHu=HyxRy
25 23 24 bitrdi H:A1-1BvAxAyAHv=HxHu=HyxRyx=vyAHu=HyxRy
26 25 rexbidva H:A1-1BvAxAyAHv=HxHu=HyxRyxAx=vyAHu=HyxRy
27 breq1 x=vxRyvRy
28 27 anbi2d x=vHu=HyxRyHu=HyvRy
29 28 rexbidv x=vyAHu=HyxRyyAHu=HyvRy
30 29 ceqsrexv vAxAx=vyAHu=HyxRyyAHu=HyvRy
31 30 adantl H:A1-1BvAxAx=vyAHu=HyxRyyAHu=HyvRy
32 26 31 bitrd H:A1-1BvAxAyAHv=HxHu=HyxRyyAHu=HyvRy
33 f1fveq H:A1-1BuAyAHu=Hyu=y
34 equcom u=yy=u
35 33 34 bitrdi H:A1-1BuAyAHu=Hyy=u
36 35 anassrs H:A1-1BuAyAHu=Hyy=u
37 36 anbi1d H:A1-1BuAyAHu=HyvRyy=uvRy
38 37 rexbidva H:A1-1BuAyAHu=HyvRyyAy=uvRy
39 breq2 y=uvRyvRu
40 39 ceqsrexv uAyAy=uvRyvRu
41 40 adantl H:A1-1BuAyAy=uvRyvRu
42 38 41 bitrd H:A1-1BuAyAHu=HyvRyvRu
43 32 42 sylan9bb H:A1-1BvAH:A1-1BuAxAyAHv=HxHu=HyxRyvRu
44 43 anandis H:A1-1BvAuAxAyAHv=HxHu=HyxRyvRu
45 15 44 bitrid H:A1-1BvAuAHvHuzw|xAyAz=Hxw=HyxRyvRu
46 4 45 sylan9bbr H:A1-1BvAuAS=zw|xAyAz=Hxw=HyxRyHvHuSvRu
47 46 an32s H:A1-1BS=zw|xAyAz=Hxw=HyxRyvAuAHvHuSvRu
48 3 47 bitr2id H:A1-1BS=zw|xAyAz=Hxw=HyxRyvAuAvRuHvSHu
49 48 ralrimivva H:A1-1BS=zw|xAyAz=Hxw=HyxRyvAuAvRuHvSHu
50 2 49 sylan H:A1-1 ontoBS=zw|xAyAz=Hxw=HyxRyvAuAvRuHvSHu
51 df-isom HIsomR,SABH:A1-1 ontoBvAuAvRuHvSHu
52 1 50 51 sylanbrc H:A1-1 ontoBS=zw|xAyAz=Hxw=HyxRyHIsomR,SAB