Description: Lemma for faclbnd4 . The N = 0 case. (Contributed by NM, 23-Dec-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | faclbnd4lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | |
|
2 | 0exp | |
|
3 | 2 | adantl | |
4 | nnnn0 | |
|
5 | 2nn0 | |
|
6 | nn0sqcl | |
|
7 | nn0expcl | |
|
8 | 5 6 7 | sylancr | |
9 | 8 | adantl | |
10 | nn0addcl | |
|
11 | nn0expcl | |
|
12 | 10 11 | syldan | |
13 | 9 12 | nn0mulcld | |
14 | 4 13 | sylan2 | |
15 | 14 | nn0ge0d | |
16 | 3 15 | eqbrtrd | |
17 | 1nn | |
|
18 | elnn0 | |
|
19 | nnnn0 | |
|
20 | 0nn0 | |
|
21 | nn0addcl | |
|
22 | 19 20 21 | sylancl | |
23 | nnexpcl | |
|
24 | 22 23 | mpdan | |
25 | id | |
|
26 | oveq1 | |
|
27 | 00id | |
|
28 | 26 27 | eqtrdi | |
29 | 25 28 | oveq12d | |
30 | 0exp0e1 | |
|
31 | 29 30 | eqtrdi | |
32 | 31 17 | eqeltrdi | |
33 | 24 32 | jaoi | |
34 | 18 33 | sylbi | |
35 | nnmulcl | |
|
36 | 17 34 35 | sylancr | |
37 | 36 | nnge1d | |
38 | 37 | adantr | |
39 | oveq2 | |
|
40 | 39 30 | eqtrdi | |
41 | sq0i | |
|
42 | 41 | oveq2d | |
43 | 2cn | |
|
44 | exp0 | |
|
45 | 43 44 | ax-mp | |
46 | 42 45 | eqtrdi | |
47 | oveq2 | |
|
48 | 47 | oveq2d | |
49 | 46 48 | oveq12d | |
50 | 40 49 | breq12d | |
51 | 50 | adantl | |
52 | 38 51 | mpbird | |
53 | 16 52 | jaodan | |
54 | 1 53 | sylan2b | |
55 | nn0cn | |
|
56 | 55 | exp0d | |
57 | 56 | oveq2d | |
58 | nn0expcl | |
|
59 | 20 58 | mpan | |
60 | 59 | nn0cnd | |
61 | 60 | mulridd | |
62 | 57 61 | sylan9eq | |
63 | 13 | nn0cnd | |
64 | 63 | mulridd | |
65 | 54 62 64 | 3brtr4d | |
66 | 65 | adantr | |
67 | oveq1 | |
|
68 | oveq2 | |
|
69 | 67 68 | oveq12d | |
70 | fveq2 | |
|
71 | fac0 | |
|
72 | 70 71 | eqtrdi | |
73 | 72 | oveq2d | |
74 | 69 73 | breq12d | |
75 | 74 | adantl | |
76 | 66 75 | mpbird | |