Metamath Proof Explorer


Theorem fbflim2

Description: A condition for a filter base B to converge to a point A . Use neighborhoods instead of open neighborhoods. Compare fbflim . (Contributed by FL, 4-Jul-2011) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis fbflim.3 F=XfilGenB
Assertion fbflim2 JTopOnXBfBasXAJfLimFAXnneiJAxBxn

Proof

Step Hyp Ref Expression
1 fbflim.3 F=XfilGenB
2 1 fbflim JTopOnXBfBasXAJfLimFAXyJAyxBxy
3 topontop JTopOnXJTop
4 3 ad2antrr JTopOnXBfBasXAXJTop
5 simpr JTopOnXBfBasXAXAX
6 toponuni JTopOnXX=J
7 6 ad2antrr JTopOnXBfBasXAXX=J
8 5 7 eleqtrd JTopOnXBfBasXAXAJ
9 eqid J=J
10 9 isneip JTopAJnneiJAnJyJAyyn
11 4 8 10 syl2anc JTopOnXBfBasXAXnneiJAnJyJAyyn
12 simpr nJyJAyynyJAyyn
13 11 12 syl6bi JTopOnXBfBasXAXnneiJAyJAyyn
14 r19.29 yJAyxBxyyJAyynyJAyxBxyAyyn
15 pm3.45 AyxBxyAyynxBxyyn
16 15 imp AyxBxyAyynxBxyyn
17 sstr2 xyynxn
18 17 com12 ynxyxn
19 18 reximdv ynxBxyxBxn
20 19 impcom xBxyynxBxn
21 16 20 syl AyxBxyAyynxBxn
22 21 rexlimivw yJAyxBxyAyynxBxn
23 14 22 syl yJAyxBxyyJAyynxBxn
24 23 ex yJAyxBxyyJAyynxBxn
25 13 24 syl9 JTopOnXBfBasXAXyJAyxBxynneiJAxBxn
26 25 ralrimdv JTopOnXBfBasXAXyJAyxBxynneiJAxBxn
27 4 adantr JTopOnXBfBasXAXyJAyJTop
28 simprl JTopOnXBfBasXAXyJAyyJ
29 simprr JTopOnXBfBasXAXyJAyAy
30 opnneip JTopyJAyyneiJA
31 27 28 29 30 syl3anc JTopOnXBfBasXAXyJAyyneiJA
32 sseq2 n=yxnxy
33 32 rexbidv n=yxBxnxBxy
34 33 rspcv yneiJAnneiJAxBxnxBxy
35 31 34 syl JTopOnXBfBasXAXyJAynneiJAxBxnxBxy
36 35 expr JTopOnXBfBasXAXyJAynneiJAxBxnxBxy
37 36 com23 JTopOnXBfBasXAXyJnneiJAxBxnAyxBxy
38 37 ralrimdva JTopOnXBfBasXAXnneiJAxBxnyJAyxBxy
39 26 38 impbid JTopOnXBfBasXAXyJAyxBxynneiJAxBxn
40 39 pm5.32da JTopOnXBfBasXAXyJAyxBxyAXnneiJAxBxn
41 2 40 bitrd JTopOnXBfBasXAJfLimFAXnneiJAxBxn