| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fbflim.3 |  | 
						
							| 2 | 1 | fbflim |  | 
						
							| 3 |  | topontop |  | 
						
							| 4 | 3 | ad2antrr |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 |  | toponuni |  | 
						
							| 7 | 6 | ad2antrr |  | 
						
							| 8 | 5 7 | eleqtrd |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 9 | isneip |  | 
						
							| 11 | 4 8 10 | syl2anc |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 | 11 12 | biimtrdi |  | 
						
							| 14 |  | r19.29 |  | 
						
							| 15 |  | pm3.45 |  | 
						
							| 16 | 15 | imp |  | 
						
							| 17 |  | sstr2 |  | 
						
							| 18 | 17 | com12 |  | 
						
							| 19 | 18 | reximdv |  | 
						
							| 20 | 19 | impcom |  | 
						
							| 21 | 16 20 | syl |  | 
						
							| 22 | 21 | rexlimivw |  | 
						
							| 23 | 14 22 | syl |  | 
						
							| 24 | 23 | ex |  | 
						
							| 25 | 13 24 | syl9 |  | 
						
							| 26 | 25 | ralrimdv |  | 
						
							| 27 | 4 | adantr |  | 
						
							| 28 |  | simprl |  | 
						
							| 29 |  | simprr |  | 
						
							| 30 |  | opnneip |  | 
						
							| 31 | 27 28 29 30 | syl3anc |  | 
						
							| 32 |  | sseq2 |  | 
						
							| 33 | 32 | rexbidv |  | 
						
							| 34 | 33 | rspcv |  | 
						
							| 35 | 31 34 | syl |  | 
						
							| 36 | 35 | expr |  | 
						
							| 37 | 36 | com23 |  | 
						
							| 38 | 37 | ralrimdva |  | 
						
							| 39 | 26 38 | impbid |  | 
						
							| 40 | 39 | pm5.32da |  | 
						
							| 41 | 2 40 | bitrd |  |