Metamath Proof Explorer


Theorem fclscmpi

Description: Forward direction of fclscmp . Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypothesis flimfnfcls.x X=J
Assertion fclscmpi JCompFFilXJfClusF

Proof

Step Hyp Ref Expression
1 flimfnfcls.x X=J
2 cmptop JCompJTop
3 1 fclsval JTopFFilXJfClusF=ifX=XxFclsJx
4 eqid X=X
5 4 iftruei ifX=XxFclsJx=xFclsJx
6 3 5 eqtrdi JTopFFilXJfClusF=xFclsJx
7 2 6 sylan JCompFFilXJfClusF=xFclsJx
8 fvex clsJxV
9 8 dfiin3 xFclsJx=ranxFclsJx
10 7 9 eqtrdi JCompFFilXJfClusF=ranxFclsJx
11 simpl JCompFFilXJComp
12 11 adantr JCompFFilXxFJComp
13 12 2 syl JCompFFilXxFJTop
14 filelss FFilXxFxX
15 14 adantll JCompFFilXxFxX
16 1 clscld JTopxXclsJxClsdJ
17 13 15 16 syl2anc JCompFFilXxFclsJxClsdJ
18 17 fmpttd JCompFFilXxFclsJx:FClsdJ
19 18 frnd JCompFFilXranxFclsJxClsdJ
20 simpr JCompFFilXFFilX
21 20 adantr JCompFFilXxFFFilX
22 simpr JCompFFilXxFxF
23 1 clsss3 JTopxXclsJxX
24 13 15 23 syl2anc JCompFFilXxFclsJxX
25 1 sscls JTopxXxclsJx
26 13 15 25 syl2anc JCompFFilXxFxclsJx
27 filss FFilXxFclsJxXxclsJxclsJxF
28 21 22 24 26 27 syl13anc JCompFFilXxFclsJxF
29 28 fmpttd JCompFFilXxFclsJx:FF
30 29 frnd JCompFFilXranxFclsJxF
31 fiss FFilXranxFclsJxFfiranxFclsJxfiF
32 20 30 31 syl2anc JCompFFilXfiranxFclsJxfiF
33 filfi FFilXfiF=F
34 20 33 syl JCompFFilXfiF=F
35 32 34 sseqtrd JCompFFilXfiranxFclsJxF
36 0nelfil FFilX¬F
37 20 36 syl JCompFFilX¬F
38 35 37 ssneldd JCompFFilX¬firanxFclsJx
39 cmpfii JCompranxFclsJxClsdJ¬firanxFclsJxranxFclsJx
40 11 19 38 39 syl3anc JCompFFilXranxFclsJx
41 10 40 eqnetrd JCompFFilXJfClusF