Metamath Proof Explorer


Theorem fdivmpt

Description: The quotient of two functions into the complex numbers as mapping. (Contributed by AV, 16-May-2020)

Ref Expression
Assertion fdivmpt F:AG:AAVF/f G = xsupp0GFxGx

Proof

Step Hyp Ref Expression
1 fex F:AAVFV
2 1 3adant2 F:AG:AAVFV
3 fex G:AAVGV
4 3 3adant1 F:AG:AAVGV
5 fdivval FVGVF/f G = F÷fGsupp0G
6 offres FVGVF÷fGsupp0G=Fsupp0G÷fGsupp0G
7 5 6 eqtrd FVGVF/f G = Fsupp0G÷fGsupp0G
8 2 4 7 syl2anc F:AG:AAVF/f G = Fsupp0G÷fGsupp0G
9 ffn F:AFFnA
10 9 3ad2ant1 F:AG:AAVFFnA
11 suppssdm Gsupp0domG
12 fdm G:AdomG=A
13 12 eqcomd G:AA=domG
14 13 3ad2ant2 F:AG:AAVA=domG
15 11 14 sseqtrrid F:AG:AAVGsupp0A
16 fnssres FFnAGsupp0AFsupp0GFnsupp0G
17 10 15 16 syl2anc F:AG:AAVFsupp0GFnsupp0G
18 ffn G:AGFnA
19 18 3ad2ant2 F:AG:AAVGFnA
20 fnssres GFnAGsupp0AGsupp0GFnsupp0G
21 19 15 20 syl2anc F:AG:AAVGsupp0GFnsupp0G
22 ovexd F:AG:AAVGsupp0V
23 inidm supp0Gsupp0G=Gsupp0
24 fvres xsupp0GFsupp0Gx=Fx
25 24 adantl F:AG:AAVxsupp0GFsupp0Gx=Fx
26 fvres xsupp0GGsupp0Gx=Gx
27 26 adantl F:AG:AAVxsupp0GGsupp0Gx=Gx
28 17 21 22 22 23 25 27 offval F:AG:AAVFsupp0G÷fGsupp0G=xsupp0GFxGx
29 8 28 eqtrd F:AG:AAVF/f G = xsupp0GFxGx