Metamath Proof Explorer


Theorem fdivmpt

Description: The quotient of two functions into the complex numbers as mapping. (Contributed by AV, 16-May-2020)

Ref Expression
Assertion fdivmpt F : A G : A A V F / f G = x supp 0 G F x G x

Proof

Step Hyp Ref Expression
1 fex F : A A V F V
2 1 3adant2 F : A G : A A V F V
3 fex G : A A V G V
4 3 3adant1 F : A G : A A V G V
5 fdivval F V G V F / f G = F ÷ f G supp 0 G
6 offres F V G V F ÷ f G supp 0 G = F supp 0 G ÷ f G supp 0 G
7 5 6 eqtrd F V G V F / f G = F supp 0 G ÷ f G supp 0 G
8 2 4 7 syl2anc F : A G : A A V F / f G = F supp 0 G ÷ f G supp 0 G
9 ffn F : A F Fn A
10 9 3ad2ant1 F : A G : A A V F Fn A
11 suppssdm G supp 0 dom G
12 fdm G : A dom G = A
13 12 eqcomd G : A A = dom G
14 13 3ad2ant2 F : A G : A A V A = dom G
15 11 14 sseqtrrid F : A G : A A V G supp 0 A
16 fnssres F Fn A G supp 0 A F supp 0 G Fn supp 0 G
17 10 15 16 syl2anc F : A G : A A V F supp 0 G Fn supp 0 G
18 ffn G : A G Fn A
19 18 3ad2ant2 F : A G : A A V G Fn A
20 fnssres G Fn A G supp 0 A G supp 0 G Fn supp 0 G
21 19 15 20 syl2anc F : A G : A A V G supp 0 G Fn supp 0 G
22 ovexd F : A G : A A V G supp 0 V
23 inidm supp 0 G supp 0 G = G supp 0
24 fvres x supp 0 G F supp 0 G x = F x
25 24 adantl F : A G : A A V x supp 0 G F supp 0 G x = F x
26 fvres x supp 0 G G supp 0 G x = G x
27 26 adantl F : A G : A A V x supp 0 G G supp 0 G x = G x
28 17 21 22 22 23 25 27 offval F : A G : A A V F supp 0 G ÷ f G supp 0 G = x supp 0 G F x G x
29 8 28 eqtrd F : A G : A A V F / f G = x supp 0 G F x G x