Description: Lemma for fin2so . (Contributed by Brendan Leahy, 29-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | fin2solem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom | |
|
2 | 3anass | |
|
3 | 1 2 | bitr4i | |
4 | sotr | |
|
5 | 3 4 | sylan2b | |
6 | 5 | anassrs | |
7 | 6 | ancomsd | |
8 | 7 | expdimp | |
9 | 8 | an32s | |
10 | 9 | ss2rabdv | |
11 | breq1 | |
|
12 | 11 | elrab | |
13 | 12 | biimpri | |
14 | 13 | adantll | |
15 | sonr | |
|
16 | breq1 | |
|
17 | 16 | elrab | |
18 | 17 | simprbi | |
19 | 15 18 | nsyl | |
20 | 19 | adantr | |
21 | nelne1 | |
|
22 | 21 | necomd | |
23 | 14 20 22 | syl2anc | |
24 | 23 | adantlrr | |
25 | vex | |
|
26 | 25 | rabex | |
27 | 26 | brrpss | |
28 | df-pss | |
|
29 | 27 28 | bitri | |
30 | 10 24 29 | sylanbrc | |
31 | 30 | ex | |