Metamath Proof Explorer


Theorem fin2so

Description: Any totally ordered Tarski-finite set is finite; in particular, no amorphous set can be ordered. Theorem 2 of [Levy58] p. 4. (Contributed by Brendan Leahy, 28-Jun-2019)

Ref Expression
Assertion fin2so A FinII R Or A A Fin

Proof

Step Hyp Ref Expression
1 simplll A FinII R Or A x A x A FinII
2 ssrab2 w x | w R v x
3 sstr w x | w R v x x A w x | w R v A
4 2 3 mpan x A w x | w R v A
5 elpw2g A FinII w x | w R v 𝒫 A w x | w R v A
6 5 biimpar A FinII w x | w R v A w x | w R v 𝒫 A
7 4 6 sylan2 A FinII x A w x | w R v 𝒫 A
8 7 ralrimivw A FinII x A v x w x | w R v 𝒫 A
9 vex x V
10 9 rabex w x | w R v V
11 10 rgenw v x w x | w R v V
12 eqid v x w x | w R v = v x w x | w R v
13 eleq1 y = w x | w R v y 𝒫 A w x | w R v 𝒫 A
14 12 13 ralrnmptw v x w x | w R v V y ran v x w x | w R v y 𝒫 A v x w x | w R v 𝒫 A
15 11 14 ax-mp y ran v x w x | w R v y 𝒫 A v x w x | w R v 𝒫 A
16 8 15 sylibr A FinII x A y ran v x w x | w R v y 𝒫 A
17 dfss3 ran v x w x | w R v 𝒫 A y ran v x w x | w R v y 𝒫 A
18 16 17 sylibr A FinII x A ran v x w x | w R v 𝒫 A
19 18 adantlr A FinII R Or A x A ran v x w x | w R v 𝒫 A
20 19 adantr A FinII R Or A x A x ran v x w x | w R v 𝒫 A
21 10 12 dmmpti dom v x w x | w R v = x
22 21 neeq1i dom v x w x | w R v x
23 dm0rn0 dom v x w x | w R v = ran v x w x | w R v =
24 23 necon3bii dom v x w x | w R v ran v x w x | w R v
25 22 24 sylbb1 x ran v x w x | w R v
26 25 adantl A FinII R Or A x A x ran v x w x | w R v
27 soss x A R Or A R Or x
28 27 impcom R Or A x A R Or x
29 porpss [⊂] Po ran v x w x | w R v
30 29 a1i R Or x [⊂] Po ran v x w x | w R v
31 solin R Or x v x y x v R y v = y y R v
32 fin2solem R Or x v x y x v R y w x | w R v [⊂] w x | w R y
33 breq2 v = y w R v w R y
34 33 rabbidv v = y w x | w R v = w x | w R y
35 34 a1i R Or x v x y x v = y w x | w R v = w x | w R y
36 fin2solem R Or x y x v x y R v w x | w R y [⊂] w x | w R v
37 36 ancom2s R Or x v x y x y R v w x | w R y [⊂] w x | w R v
38 32 35 37 3orim123d R Or x v x y x v R y v = y y R v w x | w R v [⊂] w x | w R y w x | w R v = w x | w R y w x | w R y [⊂] w x | w R v
39 31 38 mpd R Or x v x y x w x | w R v [⊂] w x | w R y w x | w R v = w x | w R y w x | w R y [⊂] w x | w R v
40 39 ralrimivva R Or x v x y x w x | w R v [⊂] w x | w R y w x | w R v = w x | w R y w x | w R y [⊂] w x | w R v
41 breq1 u = w x | w R v u [⊂] w x | w R y w x | w R v [⊂] w x | w R y
42 eqeq1 u = w x | w R v u = w x | w R y w x | w R v = w x | w R y
43 breq2 u = w x | w R v w x | w R y [⊂] u w x | w R y [⊂] w x | w R v
44 41 42 43 3orbi123d u = w x | w R v u [⊂] w x | w R y u = w x | w R y w x | w R y [⊂] u w x | w R v [⊂] w x | w R y w x | w R v = w x | w R y w x | w R y [⊂] w x | w R v
45 44 ralbidv u = w x | w R v y x u [⊂] w x | w R y u = w x | w R y w x | w R y [⊂] u y x w x | w R v [⊂] w x | w R y w x | w R v = w x | w R y w x | w R y [⊂] w x | w R v
46 12 45 ralrnmptw v x w x | w R v V u ran v x w x | w R v y x u [⊂] w x | w R y u = w x | w R y w x | w R y [⊂] u v x y x w x | w R v [⊂] w x | w R y w x | w R v = w x | w R y w x | w R y [⊂] w x | w R v
47 11 46 ax-mp u ran v x w x | w R v y x u [⊂] w x | w R y u = w x | w R y w x | w R y [⊂] u v x y x w x | w R v [⊂] w x | w R y w x | w R v = w x | w R y w x | w R y [⊂] w x | w R v
48 40 47 sylibr R Or x u ran v x w x | w R v y x u [⊂] w x | w R y u = w x | w R y w x | w R y [⊂] u
49 48 r19.21bi R Or x u ran v x w x | w R v y x u [⊂] w x | w R y u = w x | w R y w x | w R y [⊂] u
50 9 rabex w x | w R y V
51 50 rgenw y x w x | w R y V
52 34 cbvmptv v x w x | w R v = y x w x | w R y
53 breq2 z = w x | w R y u [⊂] z u [⊂] w x | w R y
54 eqeq2 z = w x | w R y u = z u = w x | w R y
55 breq1 z = w x | w R y z [⊂] u w x | w R y [⊂] u
56 53 54 55 3orbi123d z = w x | w R y u [⊂] z u = z z [⊂] u u [⊂] w x | w R y u = w x | w R y w x | w R y [⊂] u
57 52 56 ralrnmptw y x w x | w R y V z ran v x w x | w R v u [⊂] z u = z z [⊂] u y x u [⊂] w x | w R y u = w x | w R y w x | w R y [⊂] u
58 51 57 ax-mp z ran v x w x | w R v u [⊂] z u = z z [⊂] u y x u [⊂] w x | w R y u = w x | w R y w x | w R y [⊂] u
59 49 58 sylibr R Or x u ran v x w x | w R v z ran v x w x | w R v u [⊂] z u = z z [⊂] u
60 59 r19.21bi R Or x u ran v x w x | w R v z ran v x w x | w R v u [⊂] z u = z z [⊂] u
61 60 anasss R Or x u ran v x w x | w R v z ran v x w x | w R v u [⊂] z u = z z [⊂] u
62 30 61 issod R Or x [⊂] Or ran v x w x | w R v
63 28 62 syl R Or A x A [⊂] Or ran v x w x | w R v
64 63 adantll A FinII R Or A x A [⊂] Or ran v x w x | w R v
65 64 adantr A FinII R Or A x A x [⊂] Or ran v x w x | w R v
66 fin2i2 A FinII ran v x w x | w R v 𝒫 A ran v x w x | w R v [⊂] Or ran v x w x | w R v ran v x w x | w R v ran v x w x | w R v
67 1 20 26 65 66 syl22anc A FinII R Or A x A x ran v x w x | w R v ran v x w x | w R v
68 52 50 elrnmpti ran v x w x | w R v ran v x w x | w R v y x ran v x w x | w R v = w x | w R y
69 67 68 sylib A FinII R Or A x A x y x ran v x w x | w R v = w x | w R y
70 ssel2 x A z x z A
71 sonr R Or A z A ¬ z R z
72 70 71 sylan2 R Or A x A z x ¬ z R z
73 72 anassrs R Or A x A z x ¬ z R z
74 73 adantlr R Or A x A y x z x ¬ z R z
75 74 adantr R Or A x A y x z x ran v x w x | w R v = w x | w R y ¬ z R z
76 breq1 w = z w R y z R y
77 76 elrab z w x | w R y z x z R y
78 77 simplbi2 z x z R y z w x | w R y
79 78 ad2antlr y x z x ran v x w x | w R v = w x | w R y z R y z w x | w R y
80 vex z V
81 80 elint2 z ran v x w x | w R v y ran v x w x | w R v z y
82 eleq2 y = w x | w R v z y z w x | w R v
83 12 82 ralrnmptw v x w x | w R v V y ran v x w x | w R v z y v x z w x | w R v
84 11 83 ax-mp y ran v x w x | w R v z y v x z w x | w R v
85 81 84 bitri z ran v x w x | w R v v x z w x | w R v
86 breq2 v = z w R v w R z
87 86 rabbidv v = z w x | w R v = w x | w R z
88 87 eleq2d v = z z w x | w R v z w x | w R z
89 88 rspcv z x v x z w x | w R v z w x | w R z
90 breq1 w = z w R z z R z
91 90 elrab z w x | w R z z x z R z
92 91 simprbi z w x | w R z z R z
93 89 92 syl6 z x v x z w x | w R v z R z
94 93 adantl y x z x v x z w x | w R v z R z
95 85 94 syl5bi y x z x z ran v x w x | w R v z R z
96 eleq2 ran v x w x | w R v = w x | w R y z ran v x w x | w R v z w x | w R y
97 96 imbi1d ran v x w x | w R v = w x | w R y z ran v x w x | w R v z R z z w x | w R y z R z
98 95 97 syl5ibcom y x z x ran v x w x | w R v = w x | w R y z w x | w R y z R z
99 98 imp y x z x ran v x w x | w R v = w x | w R y z w x | w R y z R z
100 79 99 syld y x z x ran v x w x | w R v = w x | w R y z R y z R z
101 100 adantlll R Or A x A y x z x ran v x w x | w R v = w x | w R y z R y z R z
102 75 101 mtod R Or A x A y x z x ran v x w x | w R v = w x | w R y ¬ z R y
103 102 ex R Or A x A y x z x ran v x w x | w R v = w x | w R y ¬ z R y
104 103 ralrimdva R Or A x A y x ran v x w x | w R v = w x | w R y z x ¬ z R y
105 104 reximdva R Or A x A y x ran v x w x | w R v = w x | w R y y x z x ¬ z R y
106 105 adantll A FinII R Or A x A y x ran v x w x | w R v = w x | w R y y x z x ¬ z R y
107 106 adantr A FinII R Or A x A x y x ran v x w x | w R v = w x | w R y y x z x ¬ z R y
108 69 107 mpd A FinII R Or A x A x y x z x ¬ z R y
109 108 expl A FinII R Or A x A x y x z x ¬ z R y
110 109 alrimiv A FinII R Or A x x A x y x z x ¬ z R y
111 df-fr R Fr A x x A x y x z x ¬ z R y
112 110 111 sylibr A FinII R Or A R Fr A
113 simpr A FinII R Or A R Or A
114 df-we R We A R Fr A R Or A
115 112 113 114 sylanbrc A FinII R Or A R We A
116 weinxp R We A R A × A We A
117 115 116 sylib A FinII R Or A R A × A We A
118 sqxpexg A FinII A × A V
119 incom R A × A = A × A R
120 inex1g A × A V A × A R V
121 119 120 eqeltrid A × A V R A × A V
122 weeq1 z = R A × A z We A R A × A We A
123 122 spcegv R A × A V R A × A We A z z We A
124 118 121 123 3syl A FinII R A × A We A z z We A
125 124 imp A FinII R A × A We A z z We A
126 117 125 syldan A FinII R Or A z z We A
127 ween A dom card z z We A
128 126 127 sylibr A FinII R Or A A dom card
129 fin23 A FinII A FinIII
130 fin34 A FinIII A FinIV
131 fin45 A FinIV A FinV
132 129 130 131 3syl A FinII A FinV
133 fin56 A FinV A FinVI
134 fin67 A FinVI A FinVII
135 132 133 134 3syl A FinII A FinVII
136 fin71num A dom card A FinVII A Fin
137 136 biimpac A FinVII A dom card A Fin
138 135 137 sylan A FinII A dom card A Fin
139 128 138 syldan A FinII R Or A A Fin