| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝐴 ∈ FinII ) |
| 2 |
|
ssrab2 |
⊢ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ⊆ 𝑥 |
| 3 |
|
sstr |
⊢ ( ( { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ⊆ 𝐴 ) |
| 4 |
2 3
|
mpan |
⊢ ( 𝑥 ⊆ 𝐴 → { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ⊆ 𝐴 ) |
| 5 |
|
elpw2g |
⊢ ( 𝐴 ∈ FinII → ( { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 ↔ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ⊆ 𝐴 ) ) |
| 6 |
5
|
biimpar |
⊢ ( ( 𝐴 ∈ FinII ∧ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ⊆ 𝐴 ) → { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 ) |
| 7 |
4 6
|
sylan2 |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝐴 ) → { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 ) |
| 8 |
7
|
ralrimivw |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝐴 ) → ∀ 𝑣 ∈ 𝑥 { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 ) |
| 9 |
|
vex |
⊢ 𝑥 ∈ V |
| 10 |
9
|
rabex |
⊢ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ V |
| 11 |
10
|
rgenw |
⊢ ∀ 𝑣 ∈ 𝑥 { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ V |
| 12 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) |
| 13 |
|
eleq1 |
⊢ ( 𝑦 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } → ( 𝑦 ∈ 𝒫 𝐴 ↔ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 ) ) |
| 14 |
12 13
|
ralrnmptw |
⊢ ( ∀ 𝑣 ∈ 𝑥 { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ V → ( ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) 𝑦 ∈ 𝒫 𝐴 ↔ ∀ 𝑣 ∈ 𝑥 { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 ) ) |
| 15 |
11 14
|
ax-mp |
⊢ ( ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) 𝑦 ∈ 𝒫 𝐴 ↔ ∀ 𝑣 ∈ 𝑥 { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 ) |
| 16 |
8 15
|
sylibr |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝐴 ) → ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) 𝑦 ∈ 𝒫 𝐴 ) |
| 17 |
|
dfss3 |
⊢ ( ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ⊆ 𝒫 𝐴 ↔ ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) 𝑦 ∈ 𝒫 𝐴 ) |
| 18 |
16 17
|
sylibr |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑥 ⊆ 𝐴 ) → ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ⊆ 𝒫 𝐴 ) |
| 19 |
18
|
adantlr |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) ∧ 𝑥 ⊆ 𝐴 ) → ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ⊆ 𝒫 𝐴 ) |
| 20 |
19
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ⊆ 𝒫 𝐴 ) |
| 21 |
10 12
|
dmmpti |
⊢ dom ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = 𝑥 |
| 22 |
21
|
neeq1i |
⊢ ( dom ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ≠ ∅ ↔ 𝑥 ≠ ∅ ) |
| 23 |
|
dm0rn0 |
⊢ ( dom ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = ∅ ↔ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = ∅ ) |
| 24 |
23
|
necon3bii |
⊢ ( dom ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ≠ ∅ ↔ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ≠ ∅ ) |
| 25 |
22 24
|
sylbb1 |
⊢ ( 𝑥 ≠ ∅ → ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ≠ ∅ ) |
| 26 |
25
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ≠ ∅ ) |
| 27 |
|
soss |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑅 Or 𝐴 → 𝑅 Or 𝑥 ) ) |
| 28 |
27
|
impcom |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → 𝑅 Or 𝑥 ) |
| 29 |
|
porpss |
⊢ [⊊] Po ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) |
| 30 |
29
|
a1i |
⊢ ( 𝑅 Or 𝑥 → [⊊] Po ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 31 |
|
solin |
⊢ ( ( 𝑅 Or 𝑥 ∧ ( 𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝑣 𝑅 𝑦 ∨ 𝑣 = 𝑦 ∨ 𝑦 𝑅 𝑣 ) ) |
| 32 |
|
fin2solem |
⊢ ( ( 𝑅 Or 𝑥 ∧ ( 𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝑣 𝑅 𝑦 → { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) ) |
| 33 |
|
breq2 |
⊢ ( 𝑣 = 𝑦 → ( 𝑤 𝑅 𝑣 ↔ 𝑤 𝑅 𝑦 ) ) |
| 34 |
33
|
rabbidv |
⊢ ( 𝑣 = 𝑦 → { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) |
| 35 |
34
|
a1i |
⊢ ( ( 𝑅 Or 𝑥 ∧ ( 𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝑣 = 𝑦 → { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) ) |
| 36 |
|
fin2solem |
⊢ ( ( 𝑅 Or 𝑥 ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) → ( 𝑦 𝑅 𝑣 → { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 37 |
36
|
ancom2s |
⊢ ( ( 𝑅 Or 𝑥 ∧ ( 𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝑦 𝑅 𝑣 → { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 38 |
32 35 37
|
3orim123d |
⊢ ( ( 𝑅 Or 𝑥 ∧ ( 𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( ( 𝑣 𝑅 𝑦 ∨ 𝑣 = 𝑦 ∨ 𝑦 𝑅 𝑣 ) → ( { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) ) |
| 39 |
31 38
|
mpd |
⊢ ( ( 𝑅 Or 𝑥 ∧ ( 𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 40 |
39
|
ralrimivva |
⊢ ( 𝑅 Or 𝑥 → ∀ 𝑣 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 41 |
|
breq1 |
⊢ ( 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } → ( 𝑢 [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ↔ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) ) |
| 42 |
|
eqeq1 |
⊢ ( 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } → ( 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ↔ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) ) |
| 43 |
|
breq2 |
⊢ ( 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } → ( { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] 𝑢 ↔ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 44 |
41 42 43
|
3orbi123d |
⊢ ( 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } → ( ( 𝑢 [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] 𝑢 ) ↔ ( { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) ) |
| 45 |
44
|
ralbidv |
⊢ ( 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } → ( ∀ 𝑦 ∈ 𝑥 ( 𝑢 [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] 𝑢 ) ↔ ∀ 𝑦 ∈ 𝑥 ( { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) ) |
| 46 |
12 45
|
ralrnmptw |
⊢ ( ∀ 𝑣 ∈ 𝑥 { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ V → ( ∀ 𝑢 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ∀ 𝑦 ∈ 𝑥 ( 𝑢 [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] 𝑢 ) ↔ ∀ 𝑣 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) ) |
| 47 |
11 46
|
ax-mp |
⊢ ( ∀ 𝑢 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ∀ 𝑦 ∈ 𝑥 ( 𝑢 [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] 𝑢 ) ↔ ∀ 𝑣 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 48 |
40 47
|
sylibr |
⊢ ( 𝑅 Or 𝑥 → ∀ 𝑢 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ∀ 𝑦 ∈ 𝑥 ( 𝑢 [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] 𝑢 ) ) |
| 49 |
48
|
r19.21bi |
⊢ ( ( 𝑅 Or 𝑥 ∧ 𝑢 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) → ∀ 𝑦 ∈ 𝑥 ( 𝑢 [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] 𝑢 ) ) |
| 50 |
9
|
rabex |
⊢ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∈ V |
| 51 |
50
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝑥 { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∈ V |
| 52 |
34
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = ( 𝑦 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) |
| 53 |
|
breq2 |
⊢ ( 𝑧 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ( 𝑢 [⊊] 𝑧 ↔ 𝑢 [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) ) |
| 54 |
|
eqeq2 |
⊢ ( 𝑧 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ( 𝑢 = 𝑧 ↔ 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) ) |
| 55 |
|
breq1 |
⊢ ( 𝑧 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ( 𝑧 [⊊] 𝑢 ↔ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] 𝑢 ) ) |
| 56 |
53 54 55
|
3orbi123d |
⊢ ( 𝑧 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ( ( 𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢 ) ↔ ( 𝑢 [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] 𝑢 ) ) ) |
| 57 |
52 56
|
ralrnmptw |
⊢ ( ∀ 𝑦 ∈ 𝑥 { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ( 𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑢 [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] 𝑢 ) ) ) |
| 58 |
51 57
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ( 𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑢 [⊊] { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ∨ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } [⊊] 𝑢 ) ) |
| 59 |
49 58
|
sylibr |
⊢ ( ( 𝑅 Or 𝑥 ∧ 𝑢 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) → ∀ 𝑧 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ( 𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢 ) ) |
| 60 |
59
|
r19.21bi |
⊢ ( ( ( 𝑅 Or 𝑥 ∧ 𝑢 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) ∧ 𝑧 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) → ( 𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢 ) ) |
| 61 |
60
|
anasss |
⊢ ( ( 𝑅 Or 𝑥 ∧ ( 𝑢 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ∧ 𝑧 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) ) → ( 𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢 ) ) |
| 62 |
30 61
|
issod |
⊢ ( 𝑅 Or 𝑥 → [⊊] Or ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 63 |
28 62
|
syl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → [⊊] Or ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 64 |
63
|
adantll |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) ∧ 𝑥 ⊆ 𝐴 ) → [⊊] Or ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑥 ≠ ∅ ) → [⊊] Or ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 66 |
|
fin2i2 |
⊢ ( ( ( 𝐴 ∈ FinII ∧ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ⊆ 𝒫 𝐴 ) ∧ ( ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ≠ ∅ ∧ [⊊] Or ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) ) → ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 67 |
1 20 26 65 66
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 68 |
52 50
|
elrnmpti |
⊢ ( ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ↔ ∃ 𝑦 ∈ 𝑥 ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) |
| 69 |
67 68
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) |
| 70 |
|
ssel2 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝐴 ) |
| 71 |
|
sonr |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ¬ 𝑧 𝑅 𝑧 ) |
| 72 |
70 71
|
sylan2 |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ) → ¬ 𝑧 𝑅 𝑧 ) |
| 73 |
72
|
anassrs |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑥 ) → ¬ 𝑧 𝑅 𝑧 ) |
| 74 |
73
|
adantlr |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ¬ 𝑧 𝑅 𝑧 ) |
| 75 |
74
|
adantr |
⊢ ( ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) → ¬ 𝑧 𝑅 𝑧 ) |
| 76 |
|
breq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 𝑅 𝑦 ↔ 𝑧 𝑅 𝑦 ) ) |
| 77 |
76
|
elrab |
⊢ ( 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑦 ) ) |
| 78 |
77
|
simplbi2 |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑧 𝑅 𝑦 → 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) ) |
| 79 |
78
|
ad2antlr |
⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ∧ ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) → ( 𝑧 𝑅 𝑦 → 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) ) |
| 80 |
|
vex |
⊢ 𝑧 ∈ V |
| 81 |
80
|
elint2 |
⊢ ( 𝑧 ∈ ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ↔ ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) 𝑧 ∈ 𝑦 ) |
| 82 |
|
eleq2 |
⊢ ( 𝑦 = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 83 |
12 82
|
ralrnmptw |
⊢ ( ∀ 𝑣 ∈ 𝑥 { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ∈ V → ( ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) 𝑧 ∈ 𝑦 ↔ ∀ 𝑣 ∈ 𝑥 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ) |
| 84 |
11 83
|
ax-mp |
⊢ ( ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) 𝑧 ∈ 𝑦 ↔ ∀ 𝑣 ∈ 𝑥 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) |
| 85 |
81 84
|
bitri |
⊢ ( 𝑧 ∈ ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ↔ ∀ 𝑣 ∈ 𝑥 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) |
| 86 |
|
breq2 |
⊢ ( 𝑣 = 𝑧 → ( 𝑤 𝑅 𝑣 ↔ 𝑤 𝑅 𝑧 ) ) |
| 87 |
86
|
rabbidv |
⊢ ( 𝑣 = 𝑧 → { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑧 } ) |
| 88 |
87
|
eleq2d |
⊢ ( 𝑣 = 𝑧 → ( 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ↔ 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑧 } ) ) |
| 89 |
88
|
rspcv |
⊢ ( 𝑧 ∈ 𝑥 → ( ∀ 𝑣 ∈ 𝑥 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } → 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑧 } ) ) |
| 90 |
|
breq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 𝑅 𝑧 ↔ 𝑧 𝑅 𝑧 ) ) |
| 91 |
90
|
elrab |
⊢ ( 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑧 } ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑧 𝑅 𝑧 ) ) |
| 92 |
91
|
simprbi |
⊢ ( 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑧 } → 𝑧 𝑅 𝑧 ) |
| 93 |
89 92
|
syl6 |
⊢ ( 𝑧 ∈ 𝑥 → ( ∀ 𝑣 ∈ 𝑥 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } → 𝑧 𝑅 𝑧 ) ) |
| 94 |
93
|
adantl |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( ∀ 𝑣 ∈ 𝑥 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } → 𝑧 𝑅 𝑧 ) ) |
| 95 |
85 94
|
biimtrid |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑧 ∈ ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) → 𝑧 𝑅 𝑧 ) ) |
| 96 |
|
eleq2 |
⊢ ( ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ( 𝑧 ∈ ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) ↔ 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) ) |
| 97 |
96
|
imbi1d |
⊢ ( ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ( ( 𝑧 ∈ ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) → 𝑧 𝑅 𝑧 ) ↔ ( 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → 𝑧 𝑅 𝑧 ) ) ) |
| 98 |
95 97
|
syl5ibcom |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ( 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → 𝑧 𝑅 𝑧 ) ) ) |
| 99 |
98
|
imp |
⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ∧ ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) → ( 𝑧 ∈ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → 𝑧 𝑅 𝑧 ) ) |
| 100 |
79 99
|
syld |
⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ∧ ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) → ( 𝑧 𝑅 𝑦 → 𝑧 𝑅 𝑧 ) ) |
| 101 |
100
|
adantlll |
⊢ ( ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) → ( 𝑧 𝑅 𝑦 → 𝑧 𝑅 𝑧 ) ) |
| 102 |
75 101
|
mtod |
⊢ ( ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } ) → ¬ 𝑧 𝑅 𝑦 ) |
| 103 |
102
|
ex |
⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ( ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ¬ 𝑧 𝑅 𝑦 ) ) |
| 104 |
103
|
ralrimdva |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → ( ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 105 |
104
|
reximdva |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ 𝑥 ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 106 |
105
|
adantll |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) ∧ 𝑥 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ 𝑥 ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 107 |
106
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ( ∃ 𝑦 ∈ 𝑥 ∩ ran ( 𝑣 ∈ 𝑥 ↦ { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑣 } ) = { 𝑤 ∈ 𝑥 ∣ 𝑤 𝑅 𝑦 } → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 108 |
69 107
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) |
| 109 |
108
|
expl |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 110 |
109
|
alrimiv |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) → ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 111 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 112 |
110 111
|
sylibr |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) → 𝑅 Fr 𝐴 ) |
| 113 |
|
simpr |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) → 𝑅 Or 𝐴 ) |
| 114 |
|
df-we |
⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) |
| 115 |
112 113 114
|
sylanbrc |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) → 𝑅 We 𝐴 ) |
| 116 |
|
weinxp |
⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) |
| 117 |
115 116
|
sylib |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) |
| 118 |
|
sqxpexg |
⊢ ( 𝐴 ∈ FinII → ( 𝐴 × 𝐴 ) ∈ V ) |
| 119 |
|
incom |
⊢ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∩ 𝑅 ) |
| 120 |
|
inex1g |
⊢ ( ( 𝐴 × 𝐴 ) ∈ V → ( ( 𝐴 × 𝐴 ) ∩ 𝑅 ) ∈ V ) |
| 121 |
119 120
|
eqeltrid |
⊢ ( ( 𝐴 × 𝐴 ) ∈ V → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
| 122 |
|
weeq1 |
⊢ ( 𝑧 = ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑧 We 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) ) |
| 123 |
122
|
spcegv |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 → ∃ 𝑧 𝑧 We 𝐴 ) ) |
| 124 |
118 121 123
|
3syl |
⊢ ( 𝐴 ∈ FinII → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 → ∃ 𝑧 𝑧 We 𝐴 ) ) |
| 125 |
124
|
imp |
⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) → ∃ 𝑧 𝑧 We 𝐴 ) |
| 126 |
117 125
|
syldan |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) → ∃ 𝑧 𝑧 We 𝐴 ) |
| 127 |
|
ween |
⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑧 𝑧 We 𝐴 ) |
| 128 |
126 127
|
sylibr |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) → 𝐴 ∈ dom card ) |
| 129 |
|
fin23 |
⊢ ( 𝐴 ∈ FinII → 𝐴 ∈ FinIII ) |
| 130 |
|
fin34 |
⊢ ( 𝐴 ∈ FinIII → 𝐴 ∈ FinIV ) |
| 131 |
|
fin45 |
⊢ ( 𝐴 ∈ FinIV → 𝐴 ∈ FinV ) |
| 132 |
129 130 131
|
3syl |
⊢ ( 𝐴 ∈ FinII → 𝐴 ∈ FinV ) |
| 133 |
|
fin56 |
⊢ ( 𝐴 ∈ FinV → 𝐴 ∈ FinVI ) |
| 134 |
|
fin67 |
⊢ ( 𝐴 ∈ FinVI → 𝐴 ∈ FinVII ) |
| 135 |
132 133 134
|
3syl |
⊢ ( 𝐴 ∈ FinII → 𝐴 ∈ FinVII ) |
| 136 |
|
fin71num |
⊢ ( 𝐴 ∈ dom card → ( 𝐴 ∈ FinVII ↔ 𝐴 ∈ Fin ) ) |
| 137 |
136
|
biimpac |
⊢ ( ( 𝐴 ∈ FinVII ∧ 𝐴 ∈ dom card ) → 𝐴 ∈ Fin ) |
| 138 |
135 137
|
sylan |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝐴 ∈ dom card ) → 𝐴 ∈ Fin ) |
| 139 |
128 138
|
syldan |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑅 Or 𝐴 ) → 𝐴 ∈ Fin ) |