Metamath Proof Explorer


Theorem fin2so

Description: Any totally ordered Tarski-finite set is finite; in particular, no amorphous set can be ordered. Theorem 2 of [Levy58] p. 4. (Contributed by Brendan Leahy, 28-Jun-2019)

Ref Expression
Assertion fin2so ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) → 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 simplll ( ( ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) ∧ 𝑥𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝐴 ∈ FinII )
2 ssrab2 { 𝑤𝑥𝑤 𝑅 𝑣 } ⊆ 𝑥
3 sstr ( ( { 𝑤𝑥𝑤 𝑅 𝑣 } ⊆ 𝑥𝑥𝐴 ) → { 𝑤𝑥𝑤 𝑅 𝑣 } ⊆ 𝐴 )
4 2 3 mpan ( 𝑥𝐴 → { 𝑤𝑥𝑤 𝑅 𝑣 } ⊆ 𝐴 )
5 elpw2g ( 𝐴 ∈ FinII → ( { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 ↔ { 𝑤𝑥𝑤 𝑅 𝑣 } ⊆ 𝐴 ) )
6 5 biimpar ( ( 𝐴 ∈ FinII ∧ { 𝑤𝑥𝑤 𝑅 𝑣 } ⊆ 𝐴 ) → { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 )
7 4 6 sylan2 ( ( 𝐴 ∈ FinII𝑥𝐴 ) → { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 )
8 7 ralrimivw ( ( 𝐴 ∈ FinII𝑥𝐴 ) → ∀ 𝑣𝑥 { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 )
9 vex 𝑥 ∈ V
10 9 rabex { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ V
11 10 rgenw 𝑣𝑥 { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ V
12 eqid ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } )
13 eleq1 ( 𝑦 = { 𝑤𝑥𝑤 𝑅 𝑣 } → ( 𝑦 ∈ 𝒫 𝐴 ↔ { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 ) )
14 12 13 ralrnmptw ( ∀ 𝑣𝑥 { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ V → ( ∀ 𝑦 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) 𝑦 ∈ 𝒫 𝐴 ↔ ∀ 𝑣𝑥 { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 ) )
15 11 14 ax-mp ( ∀ 𝑦 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) 𝑦 ∈ 𝒫 𝐴 ↔ ∀ 𝑣𝑥 { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ 𝒫 𝐴 )
16 8 15 sylibr ( ( 𝐴 ∈ FinII𝑥𝐴 ) → ∀ 𝑦 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) 𝑦 ∈ 𝒫 𝐴 )
17 dfss3 ( ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ⊆ 𝒫 𝐴 ↔ ∀ 𝑦 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) 𝑦 ∈ 𝒫 𝐴 )
18 16 17 sylibr ( ( 𝐴 ∈ FinII𝑥𝐴 ) → ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ⊆ 𝒫 𝐴 )
19 18 adantlr ( ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) ∧ 𝑥𝐴 ) → ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ⊆ 𝒫 𝐴 )
20 19 adantr ( ( ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) ∧ 𝑥𝐴 ) ∧ 𝑥 ≠ ∅ ) → ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ⊆ 𝒫 𝐴 )
21 10 12 dmmpti dom ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = 𝑥
22 21 neeq1i ( dom ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ≠ ∅ ↔ 𝑥 ≠ ∅ )
23 dm0rn0 ( dom ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = ∅ ↔ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = ∅ )
24 23 necon3bii ( dom ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ≠ ∅ ↔ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ≠ ∅ )
25 22 24 sylbb1 ( 𝑥 ≠ ∅ → ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ≠ ∅ )
26 25 adantl ( ( ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) ∧ 𝑥𝐴 ) ∧ 𝑥 ≠ ∅ ) → ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ≠ ∅ )
27 soss ( 𝑥𝐴 → ( 𝑅 Or 𝐴𝑅 Or 𝑥 ) )
28 27 impcom ( ( 𝑅 Or 𝐴𝑥𝐴 ) → 𝑅 Or 𝑥 )
29 porpss [] Po ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } )
30 29 a1i ( 𝑅 Or 𝑥 → [] Po ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
31 solin ( ( 𝑅 Or 𝑥 ∧ ( 𝑣𝑥𝑦𝑥 ) ) → ( 𝑣 𝑅 𝑦𝑣 = 𝑦𝑦 𝑅 𝑣 ) )
32 fin2solem ( ( 𝑅 Or 𝑥 ∧ ( 𝑣𝑥𝑦𝑥 ) ) → ( 𝑣 𝑅 𝑦 → { 𝑤𝑥𝑤 𝑅 𝑣 } [] { 𝑤𝑥𝑤 𝑅 𝑦 } ) )
33 breq2 ( 𝑣 = 𝑦 → ( 𝑤 𝑅 𝑣𝑤 𝑅 𝑦 ) )
34 33 rabbidv ( 𝑣 = 𝑦 → { 𝑤𝑥𝑤 𝑅 𝑣 } = { 𝑤𝑥𝑤 𝑅 𝑦 } )
35 34 a1i ( ( 𝑅 Or 𝑥 ∧ ( 𝑣𝑥𝑦𝑥 ) ) → ( 𝑣 = 𝑦 → { 𝑤𝑥𝑤 𝑅 𝑣 } = { 𝑤𝑥𝑤 𝑅 𝑦 } ) )
36 fin2solem ( ( 𝑅 Or 𝑥 ∧ ( 𝑦𝑥𝑣𝑥 ) ) → ( 𝑦 𝑅 𝑣 → { 𝑤𝑥𝑤 𝑅 𝑦 } [] { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
37 36 ancom2s ( ( 𝑅 Or 𝑥 ∧ ( 𝑣𝑥𝑦𝑥 ) ) → ( 𝑦 𝑅 𝑣 → { 𝑤𝑥𝑤 𝑅 𝑦 } [] { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
38 32 35 37 3orim123d ( ( 𝑅 Or 𝑥 ∧ ( 𝑣𝑥𝑦𝑥 ) ) → ( ( 𝑣 𝑅 𝑦𝑣 = 𝑦𝑦 𝑅 𝑣 ) → ( { 𝑤𝑥𝑤 𝑅 𝑣 } [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑣 } = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] { 𝑤𝑥𝑤 𝑅 𝑣 } ) ) )
39 31 38 mpd ( ( 𝑅 Or 𝑥 ∧ ( 𝑣𝑥𝑦𝑥 ) ) → ( { 𝑤𝑥𝑤 𝑅 𝑣 } [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑣 } = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
40 39 ralrimivva ( 𝑅 Or 𝑥 → ∀ 𝑣𝑥𝑦𝑥 ( { 𝑤𝑥𝑤 𝑅 𝑣 } [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑣 } = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
41 breq1 ( 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑣 } → ( 𝑢 [] { 𝑤𝑥𝑤 𝑅 𝑦 } ↔ { 𝑤𝑥𝑤 𝑅 𝑣 } [] { 𝑤𝑥𝑤 𝑅 𝑦 } ) )
42 eqeq1 ( 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑣 } → ( 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑦 } ↔ { 𝑤𝑥𝑤 𝑅 𝑣 } = { 𝑤𝑥𝑤 𝑅 𝑦 } ) )
43 breq2 ( 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑣 } → ( { 𝑤𝑥𝑤 𝑅 𝑦 } [] 𝑢 ↔ { 𝑤𝑥𝑤 𝑅 𝑦 } [] { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
44 41 42 43 3orbi123d ( 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑣 } → ( ( 𝑢 [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] 𝑢 ) ↔ ( { 𝑤𝑥𝑤 𝑅 𝑣 } [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑣 } = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] { 𝑤𝑥𝑤 𝑅 𝑣 } ) ) )
45 44 ralbidv ( 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑣 } → ( ∀ 𝑦𝑥 ( 𝑢 [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] 𝑢 ) ↔ ∀ 𝑦𝑥 ( { 𝑤𝑥𝑤 𝑅 𝑣 } [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑣 } = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] { 𝑤𝑥𝑤 𝑅 𝑣 } ) ) )
46 12 45 ralrnmptw ( ∀ 𝑣𝑥 { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ V → ( ∀ 𝑢 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ∀ 𝑦𝑥 ( 𝑢 [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] 𝑢 ) ↔ ∀ 𝑣𝑥𝑦𝑥 ( { 𝑤𝑥𝑤 𝑅 𝑣 } [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑣 } = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] { 𝑤𝑥𝑤 𝑅 𝑣 } ) ) )
47 11 46 ax-mp ( ∀ 𝑢 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ∀ 𝑦𝑥 ( 𝑢 [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] 𝑢 ) ↔ ∀ 𝑣𝑥𝑦𝑥 ( { 𝑤𝑥𝑤 𝑅 𝑣 } [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑣 } = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
48 40 47 sylibr ( 𝑅 Or 𝑥 → ∀ 𝑢 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ∀ 𝑦𝑥 ( 𝑢 [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] 𝑢 ) )
49 48 r19.21bi ( ( 𝑅 Or 𝑥𝑢 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ) → ∀ 𝑦𝑥 ( 𝑢 [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] 𝑢 ) )
50 9 rabex { 𝑤𝑥𝑤 𝑅 𝑦 } ∈ V
51 50 rgenw 𝑦𝑥 { 𝑤𝑥𝑤 𝑅 𝑦 } ∈ V
52 34 cbvmptv ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = ( 𝑦𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑦 } )
53 breq2 ( 𝑧 = { 𝑤𝑥𝑤 𝑅 𝑦 } → ( 𝑢 [] 𝑧𝑢 [] { 𝑤𝑥𝑤 𝑅 𝑦 } ) )
54 eqeq2 ( 𝑧 = { 𝑤𝑥𝑤 𝑅 𝑦 } → ( 𝑢 = 𝑧𝑢 = { 𝑤𝑥𝑤 𝑅 𝑦 } ) )
55 breq1 ( 𝑧 = { 𝑤𝑥𝑤 𝑅 𝑦 } → ( 𝑧 [] 𝑢 ↔ { 𝑤𝑥𝑤 𝑅 𝑦 } [] 𝑢 ) )
56 53 54 55 3orbi123d ( 𝑧 = { 𝑤𝑥𝑤 𝑅 𝑦 } → ( ( 𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢 ) ↔ ( 𝑢 [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] 𝑢 ) ) )
57 52 56 ralrnmptw ( ∀ 𝑦𝑥 { 𝑤𝑥𝑤 𝑅 𝑦 } ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ( 𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢 ) ↔ ∀ 𝑦𝑥 ( 𝑢 [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] 𝑢 ) ) )
58 51 57 ax-mp ( ∀ 𝑧 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ( 𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢 ) ↔ ∀ 𝑦𝑥 ( 𝑢 [] { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ 𝑢 = { 𝑤𝑥𝑤 𝑅 𝑦 } ∨ { 𝑤𝑥𝑤 𝑅 𝑦 } [] 𝑢 ) )
59 49 58 sylibr ( ( 𝑅 Or 𝑥𝑢 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ) → ∀ 𝑧 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ( 𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢 ) )
60 59 r19.21bi ( ( ( 𝑅 Or 𝑥𝑢 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ) ∧ 𝑧 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ) → ( 𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢 ) )
61 60 anasss ( ( 𝑅 Or 𝑥 ∧ ( 𝑢 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ∧ 𝑧 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ) ) → ( 𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢 ) )
62 30 61 issod ( 𝑅 Or 𝑥 → [] Or ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
63 28 62 syl ( ( 𝑅 Or 𝐴𝑥𝐴 ) → [] Or ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
64 63 adantll ( ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) ∧ 𝑥𝐴 ) → [] Or ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
65 64 adantr ( ( ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) ∧ 𝑥𝐴 ) ∧ 𝑥 ≠ ∅ ) → [] Or ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
66 fin2i2 ( ( ( 𝐴 ∈ FinII ∧ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ⊆ 𝒫 𝐴 ) ∧ ( ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ≠ ∅ ∧ [] Or ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ) ) → ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
67 1 20 26 65 66 syl22anc ( ( ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) ∧ 𝑥𝐴 ) ∧ 𝑥 ≠ ∅ ) → ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
68 52 50 elrnmpti ( ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ↔ ∃ 𝑦𝑥 ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } )
69 67 68 sylib ( ( ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) ∧ 𝑥𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } )
70 ssel2 ( ( 𝑥𝐴𝑧𝑥 ) → 𝑧𝐴 )
71 sonr ( ( 𝑅 Or 𝐴𝑧𝐴 ) → ¬ 𝑧 𝑅 𝑧 )
72 70 71 sylan2 ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑧𝑥 ) ) → ¬ 𝑧 𝑅 𝑧 )
73 72 anassrs ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑧𝑥 ) → ¬ 𝑧 𝑅 𝑧 )
74 73 adantlr ( ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝑥 ) → ¬ 𝑧 𝑅 𝑧 )
75 74 adantr ( ( ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝑥 ) ∧ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } ) → ¬ 𝑧 𝑅 𝑧 )
76 breq1 ( 𝑤 = 𝑧 → ( 𝑤 𝑅 𝑦𝑧 𝑅 𝑦 ) )
77 76 elrab ( 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑦 } ↔ ( 𝑧𝑥𝑧 𝑅 𝑦 ) )
78 77 simplbi2 ( 𝑧𝑥 → ( 𝑧 𝑅 𝑦𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑦 } ) )
79 78 ad2antlr ( ( ( 𝑦𝑥𝑧𝑥 ) ∧ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } ) → ( 𝑧 𝑅 𝑦𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑦 } ) )
80 vex 𝑧 ∈ V
81 80 elint2 ( 𝑧 ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ↔ ∀ 𝑦 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) 𝑧𝑦 )
82 eleq2 ( 𝑦 = { 𝑤𝑥𝑤 𝑅 𝑣 } → ( 𝑧𝑦𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
83 12 82 ralrnmptw ( ∀ 𝑣𝑥 { 𝑤𝑥𝑤 𝑅 𝑣 } ∈ V → ( ∀ 𝑦 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) 𝑧𝑦 ↔ ∀ 𝑣𝑥 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑣 } ) )
84 11 83 ax-mp ( ∀ 𝑦 ∈ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) 𝑧𝑦 ↔ ∀ 𝑣𝑥 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑣 } )
85 81 84 bitri ( 𝑧 ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ↔ ∀ 𝑣𝑥 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑣 } )
86 breq2 ( 𝑣 = 𝑧 → ( 𝑤 𝑅 𝑣𝑤 𝑅 𝑧 ) )
87 86 rabbidv ( 𝑣 = 𝑧 → { 𝑤𝑥𝑤 𝑅 𝑣 } = { 𝑤𝑥𝑤 𝑅 𝑧 } )
88 87 eleq2d ( 𝑣 = 𝑧 → ( 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑣 } ↔ 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑧 } ) )
89 88 rspcv ( 𝑧𝑥 → ( ∀ 𝑣𝑥 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑣 } → 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑧 } ) )
90 breq1 ( 𝑤 = 𝑧 → ( 𝑤 𝑅 𝑧𝑧 𝑅 𝑧 ) )
91 90 elrab ( 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑧 } ↔ ( 𝑧𝑥𝑧 𝑅 𝑧 ) )
92 91 simprbi ( 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑧 } → 𝑧 𝑅 𝑧 )
93 89 92 syl6 ( 𝑧𝑥 → ( ∀ 𝑣𝑥 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑣 } → 𝑧 𝑅 𝑧 ) )
94 93 adantl ( ( 𝑦𝑥𝑧𝑥 ) → ( ∀ 𝑣𝑥 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑣 } → 𝑧 𝑅 𝑧 ) )
95 85 94 syl5bi ( ( 𝑦𝑥𝑧𝑥 ) → ( 𝑧 ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) → 𝑧 𝑅 𝑧 ) )
96 eleq2 ( ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } → ( 𝑧 ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) ↔ 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑦 } ) )
97 96 imbi1d ( ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } → ( ( 𝑧 ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) → 𝑧 𝑅 𝑧 ) ↔ ( 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑦 } → 𝑧 𝑅 𝑧 ) ) )
98 95 97 syl5ibcom ( ( 𝑦𝑥𝑧𝑥 ) → ( ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } → ( 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑦 } → 𝑧 𝑅 𝑧 ) ) )
99 98 imp ( ( ( 𝑦𝑥𝑧𝑥 ) ∧ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } ) → ( 𝑧 ∈ { 𝑤𝑥𝑤 𝑅 𝑦 } → 𝑧 𝑅 𝑧 ) )
100 79 99 syld ( ( ( 𝑦𝑥𝑧𝑥 ) ∧ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } ) → ( 𝑧 𝑅 𝑦𝑧 𝑅 𝑧 ) )
101 100 adantlll ( ( ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝑥 ) ∧ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } ) → ( 𝑧 𝑅 𝑦𝑧 𝑅 𝑧 ) )
102 75 101 mtod ( ( ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝑥 ) ∧ ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } ) → ¬ 𝑧 𝑅 𝑦 )
103 102 ex ( ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑦𝑥 ) ∧ 𝑧𝑥 ) → ( ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } → ¬ 𝑧 𝑅 𝑦 ) )
104 103 ralrimdva ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑦𝑥 ) → ( ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } → ∀ 𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
105 104 reximdva ( ( 𝑅 Or 𝐴𝑥𝐴 ) → ( ∃ 𝑦𝑥 ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
106 105 adantll ( ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) ∧ 𝑥𝐴 ) → ( ∃ 𝑦𝑥 ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
107 106 adantr ( ( ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) ∧ 𝑥𝐴 ) ∧ 𝑥 ≠ ∅ ) → ( ∃ 𝑦𝑥 ran ( 𝑣𝑥 ↦ { 𝑤𝑥𝑤 𝑅 𝑣 } ) = { 𝑤𝑥𝑤 𝑅 𝑦 } → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
108 69 107 mpd ( ( ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) ∧ 𝑥𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 )
109 108 expl ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
110 109 alrimiv ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) → ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
111 df-fr ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
112 110 111 sylibr ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) → 𝑅 Fr 𝐴 )
113 simpr ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) → 𝑅 Or 𝐴 )
114 df-we ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴𝑅 Or 𝐴 ) )
115 112 113 114 sylanbrc ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) → 𝑅 We 𝐴 )
116 weinxp ( 𝑅 We 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 )
117 115 116 sylib ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 )
118 sqxpexg ( 𝐴 ∈ FinII → ( 𝐴 × 𝐴 ) ∈ V )
119 incom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∩ 𝑅 )
120 inex1g ( ( 𝐴 × 𝐴 ) ∈ V → ( ( 𝐴 × 𝐴 ) ∩ 𝑅 ) ∈ V )
121 119 120 eqeltrid ( ( 𝐴 × 𝐴 ) ∈ V → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V )
122 weeq1 ( 𝑧 = ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑧 We 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) )
123 122 spcegv ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 → ∃ 𝑧 𝑧 We 𝐴 ) )
124 118 121 123 3syl ( 𝐴 ∈ FinII → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 → ∃ 𝑧 𝑧 We 𝐴 ) )
125 124 imp ( ( 𝐴 ∈ FinII ∧ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) → ∃ 𝑧 𝑧 We 𝐴 )
126 117 125 syldan ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) → ∃ 𝑧 𝑧 We 𝐴 )
127 ween ( 𝐴 ∈ dom card ↔ ∃ 𝑧 𝑧 We 𝐴 )
128 126 127 sylibr ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) → 𝐴 ∈ dom card )
129 fin23 ( 𝐴 ∈ FinII𝐴 ∈ FinIII )
130 fin34 ( 𝐴 ∈ FinIII𝐴 ∈ FinIV )
131 fin45 ( 𝐴 ∈ FinIV𝐴 ∈ FinV )
132 129 130 131 3syl ( 𝐴 ∈ FinII𝐴 ∈ FinV )
133 fin56 ( 𝐴 ∈ FinV𝐴 ∈ FinVI )
134 fin67 ( 𝐴 ∈ FinVI𝐴 ∈ FinVII )
135 132 133 134 3syl ( 𝐴 ∈ FinII𝐴 ∈ FinVII )
136 fin71num ( 𝐴 ∈ dom card → ( 𝐴 ∈ FinVII𝐴 ∈ Fin ) )
137 136 biimpac ( ( 𝐴 ∈ FinVII𝐴 ∈ dom card ) → 𝐴 ∈ Fin )
138 135 137 sylan ( ( 𝐴 ∈ FinII𝐴 ∈ dom card ) → 𝐴 ∈ Fin )
139 128 138 syldan ( ( 𝐴 ∈ FinII𝑅 Or 𝐴 ) → 𝐴 ∈ Fin )