| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  ∧  𝑥  ⊆  𝐴 )  ∧  𝑥  ≠  ∅ )  →  𝐴  ∈  FinII ) | 
						
							| 2 |  | ssrab2 | ⊢ { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ⊆  𝑥 | 
						
							| 3 |  | sstr | ⊢ ( ( { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ⊆  𝑥  ∧  𝑥  ⊆  𝐴 )  →  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ⊆  𝐴 ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝑥  ⊆  𝐴  →  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ⊆  𝐴 ) | 
						
							| 5 |  | elpw2g | ⊢ ( 𝐴  ∈  FinII  →  ( { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  𝒫  𝐴  ↔  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ⊆  𝐴 ) ) | 
						
							| 6 | 5 | biimpar | ⊢ ( ( 𝐴  ∈  FinII  ∧  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ⊆  𝐴 )  →  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  𝒫  𝐴 ) | 
						
							| 7 | 4 6 | sylan2 | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑥  ⊆  𝐴 )  →  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  𝒫  𝐴 ) | 
						
							| 8 | 7 | ralrimivw | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑥  ⊆  𝐴 )  →  ∀ 𝑣  ∈  𝑥 { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  𝒫  𝐴 ) | 
						
							| 9 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 10 | 9 | rabex | ⊢ { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  V | 
						
							| 11 | 10 | rgenw | ⊢ ∀ 𝑣  ∈  𝑥 { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  V | 
						
							| 12 |  | eqid | ⊢ ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) | 
						
							| 13 |  | eleq1 | ⊢ ( 𝑦  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  →  ( 𝑦  ∈  𝒫  𝐴  ↔  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  𝒫  𝐴 ) ) | 
						
							| 14 | 12 13 | ralrnmptw | ⊢ ( ∀ 𝑣  ∈  𝑥 { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  V  →  ( ∀ 𝑦  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) 𝑦  ∈  𝒫  𝐴  ↔  ∀ 𝑣  ∈  𝑥 { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  𝒫  𝐴 ) ) | 
						
							| 15 | 11 14 | ax-mp | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) 𝑦  ∈  𝒫  𝐴  ↔  ∀ 𝑣  ∈  𝑥 { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  𝒫  𝐴 ) | 
						
							| 16 | 8 15 | sylibr | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑥  ⊆  𝐴 )  →  ∀ 𝑦  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) 𝑦  ∈  𝒫  𝐴 ) | 
						
							| 17 |  | dfss3 | ⊢ ( ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ⊆  𝒫  𝐴  ↔  ∀ 𝑦  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) 𝑦  ∈  𝒫  𝐴 ) | 
						
							| 18 | 16 17 | sylibr | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑥  ⊆  𝐴 )  →  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ⊆  𝒫  𝐴 ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  ∧  𝑥  ⊆  𝐴 )  →  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ⊆  𝒫  𝐴 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  ∧  𝑥  ⊆  𝐴 )  ∧  𝑥  ≠  ∅ )  →  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ⊆  𝒫  𝐴 ) | 
						
							| 21 | 10 12 | dmmpti | ⊢ dom  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  𝑥 | 
						
							| 22 | 21 | neeq1i | ⊢ ( dom  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ≠  ∅  ↔  𝑥  ≠  ∅ ) | 
						
							| 23 |  | dm0rn0 | ⊢ ( dom  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  ∅  ↔  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  ∅ ) | 
						
							| 24 | 23 | necon3bii | ⊢ ( dom  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ≠  ∅  ↔  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ≠  ∅ ) | 
						
							| 25 | 22 24 | sylbb1 | ⊢ ( 𝑥  ≠  ∅  →  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ≠  ∅ ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  ∧  𝑥  ⊆  𝐴 )  ∧  𝑥  ≠  ∅ )  →  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ≠  ∅ ) | 
						
							| 27 |  | soss | ⊢ ( 𝑥  ⊆  𝐴  →  ( 𝑅  Or  𝐴  →  𝑅  Or  𝑥 ) ) | 
						
							| 28 | 27 | impcom | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑥  ⊆  𝐴 )  →  𝑅  Or  𝑥 ) | 
						
							| 29 |  | porpss | ⊢  [⊊]   Po  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) | 
						
							| 30 | 29 | a1i | ⊢ ( 𝑅  Or  𝑥  →   [⊊]   Po  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 31 |  | solin | ⊢ ( ( 𝑅  Or  𝑥  ∧  ( 𝑣  ∈  𝑥  ∧  𝑦  ∈  𝑥 ) )  →  ( 𝑣 𝑅 𝑦  ∨  𝑣  =  𝑦  ∨  𝑦 𝑅 𝑣 ) ) | 
						
							| 32 |  | fin2solem | ⊢ ( ( 𝑅  Or  𝑥  ∧  ( 𝑣  ∈  𝑥  ∧  𝑦  ∈  𝑥 ) )  →  ( 𝑣 𝑅 𝑦  →  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) ) | 
						
							| 33 |  | breq2 | ⊢ ( 𝑣  =  𝑦  →  ( 𝑤 𝑅 𝑣  ↔  𝑤 𝑅 𝑦 ) ) | 
						
							| 34 | 33 | rabbidv | ⊢ ( 𝑣  =  𝑦  →  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) | 
						
							| 35 | 34 | a1i | ⊢ ( ( 𝑅  Or  𝑥  ∧  ( 𝑣  ∈  𝑥  ∧  𝑦  ∈  𝑥 ) )  →  ( 𝑣  =  𝑦  →  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) ) | 
						
							| 36 |  | fin2solem | ⊢ ( ( 𝑅  Or  𝑥  ∧  ( 𝑦  ∈  𝑥  ∧  𝑣  ∈  𝑥 ) )  →  ( 𝑦 𝑅 𝑣  →  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 37 | 36 | ancom2s | ⊢ ( ( 𝑅  Or  𝑥  ∧  ( 𝑣  ∈  𝑥  ∧  𝑦  ∈  𝑥 ) )  →  ( 𝑦 𝑅 𝑣  →  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 38 | 32 35 37 | 3orim123d | ⊢ ( ( 𝑅  Or  𝑥  ∧  ( 𝑣  ∈  𝑥  ∧  𝑦  ∈  𝑥 ) )  →  ( ( 𝑣 𝑅 𝑦  ∨  𝑣  =  𝑦  ∨  𝑦 𝑅 𝑣 )  →  ( { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) ) | 
						
							| 39 | 31 38 | mpd | ⊢ ( ( 𝑅  Or  𝑥  ∧  ( 𝑣  ∈  𝑥  ∧  𝑦  ∈  𝑥 ) )  →  ( { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 40 | 39 | ralrimivva | ⊢ ( 𝑅  Or  𝑥  →  ∀ 𝑣  ∈  𝑥 ∀ 𝑦  ∈  𝑥 ( { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 41 |  | breq1 | ⊢ ( 𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  →  ( 𝑢  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ↔  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) ) | 
						
							| 42 |  | eqeq1 | ⊢ ( 𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  →  ( 𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ↔  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) ) | 
						
							| 43 |  | breq2 | ⊢ ( 𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  →  ( { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  𝑢  ↔  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 44 | 41 42 43 | 3orbi123d | ⊢ ( 𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  →  ( ( 𝑢  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  𝑢 )  ↔  ( { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) ) | 
						
							| 45 | 44 | ralbidv | ⊢ ( 𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑢  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  𝑢 )  ↔  ∀ 𝑦  ∈  𝑥 ( { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) ) | 
						
							| 46 | 12 45 | ralrnmptw | ⊢ ( ∀ 𝑣  ∈  𝑥 { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  V  →  ( ∀ 𝑢  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ∀ 𝑦  ∈  𝑥 ( 𝑢  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  𝑢 )  ↔  ∀ 𝑣  ∈  𝑥 ∀ 𝑦  ∈  𝑥 ( { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) ) | 
						
							| 47 | 11 46 | ax-mp | ⊢ ( ∀ 𝑢  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ∀ 𝑦  ∈  𝑥 ( 𝑢  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  𝑢 )  ↔  ∀ 𝑣  ∈  𝑥 ∀ 𝑦  ∈  𝑥 ( { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 48 | 40 47 | sylibr | ⊢ ( 𝑅  Or  𝑥  →  ∀ 𝑢  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ∀ 𝑦  ∈  𝑥 ( 𝑢  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  𝑢 ) ) | 
						
							| 49 | 48 | r19.21bi | ⊢ ( ( 𝑅  Or  𝑥  ∧  𝑢  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) )  →  ∀ 𝑦  ∈  𝑥 ( 𝑢  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  𝑢 ) ) | 
						
							| 50 | 9 | rabex | ⊢ { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∈  V | 
						
							| 51 | 50 | rgenw | ⊢ ∀ 𝑦  ∈  𝑥 { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∈  V | 
						
							| 52 | 34 | cbvmptv | ⊢ ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  ( 𝑦  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) | 
						
							| 53 |  | breq2 | ⊢ ( 𝑧  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ( 𝑢  [⊊]  𝑧  ↔  𝑢  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) ) | 
						
							| 54 |  | eqeq2 | ⊢ ( 𝑧  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ( 𝑢  =  𝑧  ↔  𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) ) | 
						
							| 55 |  | breq1 | ⊢ ( 𝑧  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ( 𝑧  [⊊]  𝑢  ↔  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  𝑢 ) ) | 
						
							| 56 | 53 54 55 | 3orbi123d | ⊢ ( 𝑧  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ( ( 𝑢  [⊊]  𝑧  ∨  𝑢  =  𝑧  ∨  𝑧  [⊊]  𝑢 )  ↔  ( 𝑢  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  𝑢 ) ) ) | 
						
							| 57 | 52 56 | ralrnmptw | ⊢ ( ∀ 𝑦  ∈  𝑥 { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∈  V  →  ( ∀ 𝑧  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ( 𝑢  [⊊]  𝑧  ∨  𝑢  =  𝑧  ∨  𝑧  [⊊]  𝑢 )  ↔  ∀ 𝑦  ∈  𝑥 ( 𝑢  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  𝑢 ) ) ) | 
						
							| 58 | 51 57 | ax-mp | ⊢ ( ∀ 𝑧  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ( 𝑢  [⊊]  𝑧  ∨  𝑢  =  𝑧  ∨  𝑧  [⊊]  𝑢 )  ↔  ∀ 𝑦  ∈  𝑥 ( 𝑢  [⊊]  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  𝑢  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ∨  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  [⊊]  𝑢 ) ) | 
						
							| 59 | 49 58 | sylibr | ⊢ ( ( 𝑅  Or  𝑥  ∧  𝑢  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) )  →  ∀ 𝑧  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ( 𝑢  [⊊]  𝑧  ∨  𝑢  =  𝑧  ∨  𝑧  [⊊]  𝑢 ) ) | 
						
							| 60 | 59 | r19.21bi | ⊢ ( ( ( 𝑅  Or  𝑥  ∧  𝑢  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) )  ∧  𝑧  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) )  →  ( 𝑢  [⊊]  𝑧  ∨  𝑢  =  𝑧  ∨  𝑧  [⊊]  𝑢 ) ) | 
						
							| 61 | 60 | anasss | ⊢ ( ( 𝑅  Or  𝑥  ∧  ( 𝑢  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ∧  𝑧  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) )  →  ( 𝑢  [⊊]  𝑧  ∨  𝑢  =  𝑧  ∨  𝑧  [⊊]  𝑢 ) ) | 
						
							| 62 | 30 61 | issod | ⊢ ( 𝑅  Or  𝑥  →   [⊊]   Or  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 63 | 28 62 | syl | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑥  ⊆  𝐴 )  →   [⊊]   Or  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 64 | 63 | adantll | ⊢ ( ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  ∧  𝑥  ⊆  𝐴 )  →   [⊊]   Or  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  ∧  𝑥  ⊆  𝐴 )  ∧  𝑥  ≠  ∅ )  →   [⊊]   Or  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 66 |  | fin2i2 | ⊢ ( ( ( 𝐴  ∈  FinII  ∧  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ⊆  𝒫  𝐴 )  ∧  ( ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ≠  ∅  ∧   [⊊]   Or  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) )  →  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 67 | 1 20 26 65 66 | syl22anc | ⊢ ( ( ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  ∧  𝑥  ⊆  𝐴 )  ∧  𝑥  ≠  ∅ )  →  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 68 | 52 50 | elrnmpti | ⊢ ( ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ↔  ∃ 𝑦  ∈  𝑥 ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) | 
						
							| 69 | 67 68 | sylib | ⊢ ( ( ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  ∧  𝑥  ⊆  𝐴 )  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) | 
						
							| 70 |  | ssel2 | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑧  ∈  𝑥 )  →  𝑧  ∈  𝐴 ) | 
						
							| 71 |  | sonr | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑧  ∈  𝐴 )  →  ¬  𝑧 𝑅 𝑧 ) | 
						
							| 72 | 70 71 | sylan2 | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑧  ∈  𝑥 ) )  →  ¬  𝑧 𝑅 𝑧 ) | 
						
							| 73 | 72 | anassrs | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ⊆  𝐴 )  ∧  𝑧  ∈  𝑥 )  →  ¬  𝑧 𝑅 𝑧 ) | 
						
							| 74 | 73 | adantlr | ⊢ ( ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ⊆  𝐴 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝑥 )  →  ¬  𝑧 𝑅 𝑧 ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ⊆  𝐴 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝑥 )  ∧  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } )  →  ¬  𝑧 𝑅 𝑧 ) | 
						
							| 76 |  | breq1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤 𝑅 𝑦  ↔  𝑧 𝑅 𝑦 ) ) | 
						
							| 77 | 76 | elrab | ⊢ ( 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  ↔  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑦 ) ) | 
						
							| 78 | 77 | simplbi2 | ⊢ ( 𝑧  ∈  𝑥  →  ( 𝑧 𝑅 𝑦  →  𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) ) | 
						
							| 79 | 78 | ad2antlr | ⊢ ( ( ( 𝑦  ∈  𝑥  ∧  𝑧  ∈  𝑥 )  ∧  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } )  →  ( 𝑧 𝑅 𝑦  →  𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) ) | 
						
							| 80 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 81 | 80 | elint2 | ⊢ ( 𝑧  ∈  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ↔  ∀ 𝑦  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) 𝑧  ∈  𝑦 ) | 
						
							| 82 |  | eleq2 | ⊢ ( 𝑦  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  →  ( 𝑧  ∈  𝑦  ↔  𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 83 | 12 82 | ralrnmptw | ⊢ ( ∀ 𝑣  ∈  𝑥 { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ∈  V  →  ( ∀ 𝑦  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) 𝑧  ∈  𝑦  ↔  ∀ 𝑣  ∈  𝑥 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) ) | 
						
							| 84 | 11 83 | ax-mp | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) 𝑧  ∈  𝑦  ↔  ∀ 𝑣  ∈  𝑥 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) | 
						
							| 85 | 81 84 | bitri | ⊢ ( 𝑧  ∈  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ↔  ∀ 𝑣  ∈  𝑥 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } ) | 
						
							| 86 |  | breq2 | ⊢ ( 𝑣  =  𝑧  →  ( 𝑤 𝑅 𝑣  ↔  𝑤 𝑅 𝑧 ) ) | 
						
							| 87 | 86 | rabbidv | ⊢ ( 𝑣  =  𝑧  →  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑧 } ) | 
						
							| 88 | 87 | eleq2d | ⊢ ( 𝑣  =  𝑧  →  ( 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  ↔  𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑧 } ) ) | 
						
							| 89 | 88 | rspcv | ⊢ ( 𝑧  ∈  𝑥  →  ( ∀ 𝑣  ∈  𝑥 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  →  𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑧 } ) ) | 
						
							| 90 |  | breq1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤 𝑅 𝑧  ↔  𝑧 𝑅 𝑧 ) ) | 
						
							| 91 | 90 | elrab | ⊢ ( 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑧 }  ↔  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑧 ) ) | 
						
							| 92 | 91 | simprbi | ⊢ ( 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑧 }  →  𝑧 𝑅 𝑧 ) | 
						
							| 93 | 89 92 | syl6 | ⊢ ( 𝑧  ∈  𝑥  →  ( ∀ 𝑣  ∈  𝑥 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  →  𝑧 𝑅 𝑧 ) ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( 𝑦  ∈  𝑥  ∧  𝑧  ∈  𝑥 )  →  ( ∀ 𝑣  ∈  𝑥 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 }  →  𝑧 𝑅 𝑧 ) ) | 
						
							| 95 | 85 94 | biimtrid | ⊢ ( ( 𝑦  ∈  𝑥  ∧  𝑧  ∈  𝑥 )  →  ( 𝑧  ∈  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  →  𝑧 𝑅 𝑧 ) ) | 
						
							| 96 |  | eleq2 | ⊢ ( ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ( 𝑧  ∈  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  ↔  𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } ) ) | 
						
							| 97 | 96 | imbi1d | ⊢ ( ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ( ( 𝑧  ∈  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  →  𝑧 𝑅 𝑧 )  ↔  ( 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  𝑧 𝑅 𝑧 ) ) ) | 
						
							| 98 | 95 97 | syl5ibcom | ⊢ ( ( 𝑦  ∈  𝑥  ∧  𝑧  ∈  𝑥 )  →  ( ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ( 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  𝑧 𝑅 𝑧 ) ) ) | 
						
							| 99 | 98 | imp | ⊢ ( ( ( 𝑦  ∈  𝑥  ∧  𝑧  ∈  𝑥 )  ∧  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } )  →  ( 𝑧  ∈  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  𝑧 𝑅 𝑧 ) ) | 
						
							| 100 | 79 99 | syld | ⊢ ( ( ( 𝑦  ∈  𝑥  ∧  𝑧  ∈  𝑥 )  ∧  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } )  →  ( 𝑧 𝑅 𝑦  →  𝑧 𝑅 𝑧 ) ) | 
						
							| 101 | 100 | adantlll | ⊢ ( ( ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ⊆  𝐴 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝑥 )  ∧  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } )  →  ( 𝑧 𝑅 𝑦  →  𝑧 𝑅 𝑧 ) ) | 
						
							| 102 | 75 101 | mtod | ⊢ ( ( ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ⊆  𝐴 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝑥 )  ∧  ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 } )  →  ¬  𝑧 𝑅 𝑦 ) | 
						
							| 103 | 102 | ex | ⊢ ( ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ⊆  𝐴 )  ∧  𝑦  ∈  𝑥 )  ∧  𝑧  ∈  𝑥 )  →  ( ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 104 | 103 | ralrimdva | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ⊆  𝐴 )  ∧  𝑦  ∈  𝑥 )  →  ( ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 105 | 104 | reximdva | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑥  ⊆  𝐴 )  →  ( ∃ 𝑦  ∈  𝑥 ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 106 | 105 | adantll | ⊢ ( ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  ∧  𝑥  ⊆  𝐴 )  →  ( ∃ 𝑦  ∈  𝑥 ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  ∧  𝑥  ⊆  𝐴 )  ∧  𝑥  ≠  ∅ )  →  ( ∃ 𝑦  ∈  𝑥 ∩  ran  ( 𝑣  ∈  𝑥  ↦  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑣 } )  =  { 𝑤  ∈  𝑥  ∣  𝑤 𝑅 𝑦 }  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 108 | 69 107 | mpd | ⊢ ( ( ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  ∧  𝑥  ⊆  𝐴 )  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦 ) | 
						
							| 109 | 108 | expl | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 110 | 109 | alrimiv | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  →  ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 111 |  | df-fr | ⊢ ( 𝑅  Fr  𝐴  ↔  ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 112 | 110 111 | sylibr | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  →  𝑅  Fr  𝐴 ) | 
						
							| 113 |  | simpr | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  →  𝑅  Or  𝐴 ) | 
						
							| 114 |  | df-we | ⊢ ( 𝑅  We  𝐴  ↔  ( 𝑅  Fr  𝐴  ∧  𝑅  Or  𝐴 ) ) | 
						
							| 115 | 112 113 114 | sylanbrc | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  →  𝑅  We  𝐴 ) | 
						
							| 116 |  | weinxp | ⊢ ( 𝑅  We  𝐴  ↔  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴 ) | 
						
							| 117 | 115 116 | sylib | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  →  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴 ) | 
						
							| 118 |  | sqxpexg | ⊢ ( 𝐴  ∈  FinII  →  ( 𝐴  ×  𝐴 )  ∈  V ) | 
						
							| 119 |  | incom | ⊢ ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( 𝐴  ×  𝐴 )  ∩  𝑅 ) | 
						
							| 120 |  | inex1g | ⊢ ( ( 𝐴  ×  𝐴 )  ∈  V  →  ( ( 𝐴  ×  𝐴 )  ∩  𝑅 )  ∈  V ) | 
						
							| 121 | 119 120 | eqeltrid | ⊢ ( ( 𝐴  ×  𝐴 )  ∈  V  →  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∈  V ) | 
						
							| 122 |  | weeq1 | ⊢ ( 𝑧  =  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  →  ( 𝑧  We  𝐴  ↔  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴 ) ) | 
						
							| 123 | 122 | spcegv | ⊢ ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  →  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴  →  ∃ 𝑧 𝑧  We  𝐴 ) ) | 
						
							| 124 | 118 121 123 | 3syl | ⊢ ( 𝐴  ∈  FinII  →  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴  →  ∃ 𝑧 𝑧  We  𝐴 ) ) | 
						
							| 125 | 124 | imp | ⊢ ( ( 𝐴  ∈  FinII  ∧  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  We  𝐴 )  →  ∃ 𝑧 𝑧  We  𝐴 ) | 
						
							| 126 | 117 125 | syldan | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  →  ∃ 𝑧 𝑧  We  𝐴 ) | 
						
							| 127 |  | ween | ⊢ ( 𝐴  ∈  dom  card  ↔  ∃ 𝑧 𝑧  We  𝐴 ) | 
						
							| 128 | 126 127 | sylibr | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  →  𝐴  ∈  dom  card ) | 
						
							| 129 |  | fin23 | ⊢ ( 𝐴  ∈  FinII  →  𝐴  ∈  FinIII ) | 
						
							| 130 |  | fin34 | ⊢ ( 𝐴  ∈  FinIII  →  𝐴  ∈  FinIV ) | 
						
							| 131 |  | fin45 | ⊢ ( 𝐴  ∈  FinIV  →  𝐴  ∈  FinV ) | 
						
							| 132 | 129 130 131 | 3syl | ⊢ ( 𝐴  ∈  FinII  →  𝐴  ∈  FinV ) | 
						
							| 133 |  | fin56 | ⊢ ( 𝐴  ∈  FinV  →  𝐴  ∈  FinVI ) | 
						
							| 134 |  | fin67 | ⊢ ( 𝐴  ∈  FinVI  →  𝐴  ∈  FinVII ) | 
						
							| 135 | 132 133 134 | 3syl | ⊢ ( 𝐴  ∈  FinII  →  𝐴  ∈  FinVII ) | 
						
							| 136 |  | fin71num | ⊢ ( 𝐴  ∈  dom  card  →  ( 𝐴  ∈  FinVII  ↔  𝐴  ∈  Fin ) ) | 
						
							| 137 | 136 | biimpac | ⊢ ( ( 𝐴  ∈  FinVII  ∧  𝐴  ∈  dom  card )  →  𝐴  ∈  Fin ) | 
						
							| 138 | 135 137 | sylan | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝐴  ∈  dom  card )  →  𝐴  ∈  Fin ) | 
						
							| 139 | 128 138 | syldan | ⊢ ( ( 𝐴  ∈  FinII  ∧  𝑅  Or  𝐴 )  →  𝐴  ∈  Fin ) |