Description: Lemma for ^^ recursion theorems. (Contributed by ML, 17-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | finxpreclem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |
|
2 | nfmpo2 | |
|
3 | nfcv | |
|
4 | 2 3 | nffv | |
5 | nfcv | |
|
6 | 4 5 | nfne | |
7 | 1 6 | nfim | |
8 | nfv | |
|
9 | nfv | |
|
10 | nfmpo1 | |
|
11 | nfcv | |
|
12 | 10 11 | nffv | |
13 | nfcv | |
|
14 | 12 13 | nfne | |
15 | 9 14 | nfim | |
16 | 8 15 | nfim | |
17 | 1onn | |
|
18 | 17 | elexi | |
19 | df-ov | |
|
20 | 0ex | |
|
21 | opex | |
|
22 | opex | |
|
23 | 21 22 | ifex | |
24 | 20 23 | ifex | |
25 | 24 | csbex | |
26 | 25 | csbex | |
27 | eqid | |
|
28 | 27 | ovmpos | |
29 | 17 26 28 | mp3an13 | |
30 | 29 | adantr | |
31 | csbeq1a | |
|
32 | csbeq1a | |
|
33 | 31 32 | sylan9eqr | |
34 | 33 | adantl | |
35 | eleq1 | |
|
36 | 35 | notbid | |
37 | 36 | biimprcd | |
38 | pm3.14 | |
|
39 | 38 | olcs | |
40 | 37 39 | syl6 | |
41 | iffalse | |
|
42 | 40 41 | syl6 | |
43 | 42 | imp | |
44 | ifeqor | |
|
45 | vuniex | |
|
46 | fvex | |
|
47 | 45 46 | opnzi | |
48 | 47 | neii | |
49 | eqeq1 | |
|
50 | 48 49 | mtbiri | |
51 | vex | |
|
52 | vex | |
|
53 | 51 52 | opnzi | |
54 | 53 | neii | |
55 | eqeq1 | |
|
56 | 54 55 | mtbiri | |
57 | 50 56 | jaoi | |
58 | 44 57 | mp1i | |
59 | 58 | neqned | |
60 | 43 59 | eqnetrd | |
61 | 60 | adantrl | |
62 | 34 61 | eqnetrrd | |
63 | 62 | adantl | |
64 | 30 63 | eqnetrd | |
65 | 19 64 | eqnetrrid | |
66 | 65 | ancom2s | |
67 | 66 | an12s | |
68 | 67 | exp31 | |
69 | 16 18 68 | vtoclef | |
70 | 7 69 | vtoclefex | |
71 | 70 | anabsi5 | |
72 | 71 | necomd | |
73 | 72 | neneqd | |