Metamath Proof Explorer


Theorem fiun

Description: The union of a chain (with respect to inclusion) of functions is a function. Analogous to f1iun . (Contributed by AV, 6-Oct-2023)

Ref Expression
Hypotheses fiun.1 x=yB=C
fiun.2 BV
Assertion fiun xAB:DSyABCCBxAB:xADS

Proof

Step Hyp Ref Expression
1 fiun.1 x=yB=C
2 fiun.2 BV
3 vex uV
4 eqeq1 z=uz=Bu=B
5 4 rexbidv z=uxAz=BxAu=B
6 3 5 elab uz|xAz=BxAu=B
7 r19.29 xAB:DSyABCCBxAu=BxAB:DSyABCCBu=B
8 nfv xFunu
9 nfre1 xxAz=B
10 9 nfab _xz|xAz=B
11 nfv xuvvu
12 10 11 nfralw xvz|xAz=Buvvu
13 8 12 nfan xFunuvz|xAz=Buvvu
14 ffun B:DSFunB
15 funeq u=BFunuFunB
16 bianir FunBFunuFunBFunu
17 14 15 16 syl2an B:DSu=BFunu
18 17 adantlr B:DSyABCCBu=BFunu
19 1 fiunlem B:DSyABCCBu=Bvz|xAz=Buvvu
20 18 19 jca B:DSyABCCBu=BFunuvz|xAz=Buvvu
21 20 a1i xAB:DSyABCCBu=BFunuvz|xAz=Buvvu
22 13 21 rexlimi xAB:DSyABCCBu=BFunuvz|xAz=Buvvu
23 7 22 syl xAB:DSyABCCBxAu=BFunuvz|xAz=Buvvu
24 6 23 sylan2b xAB:DSyABCCBuz|xAz=BFunuvz|xAz=Buvvu
25 24 ralrimiva xAB:DSyABCCBuz|xAz=BFunuvz|xAz=Buvvu
26 fununi uz|xAz=BFunuvz|xAz=BuvvuFunz|xAz=B
27 25 26 syl xAB:DSyABCCBFunz|xAz=B
28 2 dfiun2 xAB=z|xAz=B
29 28 funeqi FunxABFunz|xAz=B
30 27 29 sylibr xAB:DSyABCCBFunxAB
31 3 eldm2 udomBvuvB
32 fdm B:DSdomB=D
33 32 eleq2d B:DSudomBuD
34 31 33 bitr3id B:DSvuvBuD
35 34 adantr B:DSyABCCBvuvBuD
36 35 ralrexbid xAB:DSyABCCBxAvuvBxAuD
37 eliun uvxABxAuvB
38 37 exbii vuvxABvxAuvB
39 3 eldm2 udomxABvuvxAB
40 rexcom4 xAvuvBvxAuvB
41 38 39 40 3bitr4i udomxABxAvuvB
42 eliun uxADxAuD
43 36 41 42 3bitr4g xAB:DSyABCCBudomxABuxAD
44 43 eqrdv xAB:DSyABCCBdomxAB=xAD
45 df-fn xABFnxADFunxABdomxAB=xAD
46 30 44 45 sylanbrc xAB:DSyABCCBxABFnxAD
47 rniun ranxAB=xAranB
48 frn B:DSranBS
49 48 adantr B:DSyABCCBranBS
50 49 ralimi xAB:DSyABCCBxAranBS
51 iunss xAranBSxAranBS
52 50 51 sylibr xAB:DSyABCCBxAranBS
53 47 52 eqsstrid xAB:DSyABCCBranxABS
54 df-f xAB:xADSxABFnxADranxABS
55 46 53 54 sylanbrc xAB:DSyABCCBxAB:xADS