Metamath Proof Explorer


Theorem fliftfun

Description: The function F is the unique function defined by FA = B , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F=ranxXAB
flift.2 φxXAR
flift.3 φxXBS
fliftfun.4 x=yA=C
fliftfun.5 x=yB=D
Assertion fliftfun φFunFxXyXA=CB=D

Proof

Step Hyp Ref Expression
1 flift.1 F=ranxXAB
2 flift.2 φxXAR
3 flift.3 φxXBS
4 fliftfun.4 x=yA=C
5 fliftfun.5 x=yB=D
6 nfv xφ
7 nfmpt1 _xxXAB
8 7 nfrn _xranxXAB
9 1 8 nfcxfr _xF
10 9 nffun xFunF
11 fveq2 A=CFA=FC
12 simplr φFunFxXyXFunF
13 1 2 3 fliftel1 φxXAFB
14 13 ad2ant2r φFunFxXyXAFB
15 funbrfv FunFAFBFA=B
16 12 14 15 sylc φFunFxXyXFA=B
17 simprr φFunFxXyXyX
18 eqidd φFunFxXyXC=C
19 eqidd φFunFxXyXD=D
20 4 eqeq2d x=yC=AC=C
21 5 eqeq2d x=yD=BD=D
22 20 21 anbi12d x=yC=AD=BC=CD=D
23 22 rspcev yXC=CD=DxXC=AD=B
24 17 18 19 23 syl12anc φFunFxXyXxXC=AD=B
25 1 2 3 fliftel φCFDxXC=AD=B
26 25 ad2antrr φFunFxXyXCFDxXC=AD=B
27 24 26 mpbird φFunFxXyXCFD
28 funbrfv FunFCFDFC=D
29 12 27 28 sylc φFunFxXyXFC=D
30 16 29 eqeq12d φFunFxXyXFA=FCB=D
31 11 30 imbitrid φFunFxXyXA=CB=D
32 31 anassrs φFunFxXyXA=CB=D
33 32 ralrimiva φFunFxXyXA=CB=D
34 33 exp31 φFunFxXyXA=CB=D
35 6 10 34 ralrimd φFunFxXyXA=CB=D
36 1 2 3 fliftel φzFuxXz=Au=B
37 1 2 3 fliftel φzFvxXz=Av=B
38 4 eqeq2d x=yz=Az=C
39 5 eqeq2d x=yv=Bv=D
40 38 39 anbi12d x=yz=Av=Bz=Cv=D
41 40 cbvrexvw xXz=Av=ByXz=Cv=D
42 37 41 bitrdi φzFvyXz=Cv=D
43 36 42 anbi12d φzFuzFvxXz=Au=ByXz=Cv=D
44 43 biimpd φzFuzFvxXz=Au=ByXz=Cv=D
45 reeanv xXyXz=Au=Bz=Cv=DxXz=Au=ByXz=Cv=D
46 r19.29 xXyXA=CB=DxXyXz=Au=Bz=Cv=DxXyXA=CB=DyXz=Au=Bz=Cv=D
47 r19.29 yXA=CB=DyXz=Au=Bz=Cv=DyXA=CB=Dz=Au=Bz=Cv=D
48 eqtr2 z=Az=CA=C
49 48 ad2ant2r z=Au=Bz=Cv=DA=C
50 49 imim1i A=CB=Dz=Au=Bz=Cv=DB=D
51 50 imp A=CB=Dz=Au=Bz=Cv=DB=D
52 simprlr A=CB=Dz=Au=Bz=Cv=Du=B
53 simprrr A=CB=Dz=Au=Bz=Cv=Dv=D
54 51 52 53 3eqtr4d A=CB=Dz=Au=Bz=Cv=Du=v
55 54 rexlimivw yXA=CB=Dz=Au=Bz=Cv=Du=v
56 47 55 syl yXA=CB=DyXz=Au=Bz=Cv=Du=v
57 56 rexlimivw xXyXA=CB=DyXz=Au=Bz=Cv=Du=v
58 46 57 syl xXyXA=CB=DxXyXz=Au=Bz=Cv=Du=v
59 58 ex xXyXA=CB=DxXyXz=Au=Bz=Cv=Du=v
60 45 59 biimtrrid xXyXA=CB=DxXz=Au=ByXz=Cv=Du=v
61 44 60 syl9 φxXyXA=CB=DzFuzFvu=v
62 61 alrimdv φxXyXA=CB=DvzFuzFvu=v
63 62 alrimdv φxXyXA=CB=DuvzFuzFvu=v
64 63 alrimdv φxXyXA=CB=DzuvzFuzFvu=v
65 1 2 3 fliftrel φFR×S
66 relxp RelR×S
67 relss FR×SRelR×SRelF
68 65 66 67 mpisyl φRelF
69 dffun2 FunFRelFzuvzFuzFvu=v
70 69 baib RelFFunFzuvzFuzFvu=v
71 68 70 syl φFunFzuvzFuzFvu=v
72 64 71 sylibrd φxXyXA=CB=DFunF
73 35 72 impbid φFunFxXyXA=CB=D