| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flift.1 |
|
| 2 |
|
flift.2 |
|
| 3 |
|
flift.3 |
|
| 4 |
|
fliftfun.4 |
|
| 5 |
|
fliftfun.5 |
|
| 6 |
|
nfv |
|
| 7 |
|
nfmpt1 |
|
| 8 |
7
|
nfrn |
|
| 9 |
1 8
|
nfcxfr |
|
| 10 |
9
|
nffun |
|
| 11 |
|
fveq2 |
|
| 12 |
|
simplr |
|
| 13 |
1 2 3
|
fliftel1 |
|
| 14 |
13
|
ad2ant2r |
|
| 15 |
|
funbrfv |
|
| 16 |
12 14 15
|
sylc |
|
| 17 |
|
simprr |
|
| 18 |
|
eqidd |
|
| 19 |
|
eqidd |
|
| 20 |
4
|
eqeq2d |
|
| 21 |
5
|
eqeq2d |
|
| 22 |
20 21
|
anbi12d |
|
| 23 |
22
|
rspcev |
|
| 24 |
17 18 19 23
|
syl12anc |
|
| 25 |
1 2 3
|
fliftel |
|
| 26 |
25
|
ad2antrr |
|
| 27 |
24 26
|
mpbird |
|
| 28 |
|
funbrfv |
|
| 29 |
12 27 28
|
sylc |
|
| 30 |
16 29
|
eqeq12d |
|
| 31 |
11 30
|
imbitrid |
|
| 32 |
31
|
anassrs |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
33
|
exp31 |
|
| 35 |
6 10 34
|
ralrimd |
|
| 36 |
1 2 3
|
fliftel |
|
| 37 |
1 2 3
|
fliftel |
|
| 38 |
4
|
eqeq2d |
|
| 39 |
5
|
eqeq2d |
|
| 40 |
38 39
|
anbi12d |
|
| 41 |
40
|
cbvrexvw |
|
| 42 |
37 41
|
bitrdi |
|
| 43 |
36 42
|
anbi12d |
|
| 44 |
43
|
biimpd |
|
| 45 |
|
reeanv |
|
| 46 |
|
r19.29 |
|
| 47 |
|
r19.29 |
|
| 48 |
|
eqtr2 |
|
| 49 |
48
|
ad2ant2r |
|
| 50 |
49
|
imim1i |
|
| 51 |
50
|
imp |
|
| 52 |
|
simprlr |
|
| 53 |
|
simprrr |
|
| 54 |
51 52 53
|
3eqtr4d |
|
| 55 |
54
|
rexlimivw |
|
| 56 |
47 55
|
syl |
|
| 57 |
56
|
rexlimivw |
|
| 58 |
46 57
|
syl |
|
| 59 |
58
|
ex |
|
| 60 |
45 59
|
biimtrrid |
|
| 61 |
44 60
|
syl9 |
|
| 62 |
61
|
alrimdv |
|
| 63 |
62
|
alrimdv |
|
| 64 |
63
|
alrimdv |
|
| 65 |
1 2 3
|
fliftrel |
|
| 66 |
|
relxp |
|
| 67 |
|
relss |
|
| 68 |
65 66 67
|
mpisyl |
|
| 69 |
|
dffun2 |
|
| 70 |
69
|
baib |
|
| 71 |
68 70
|
syl |
|
| 72 |
64 71
|
sylibrd |
|
| 73 |
35 72
|
impbid |
|