Metamath Proof Explorer


Theorem fmfnfmlem3

Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypotheses fmfnfm.b φBfBasY
fmfnfm.l φLFilX
fmfnfm.f φF:YX
fmfnfm.fm φXFilMapFBL
Assertion fmfnfmlem3 φfiranxLF-1x=ranxLF-1x

Proof

Step Hyp Ref Expression
1 fmfnfm.b φBfBasY
2 fmfnfm.l φLFilX
3 fmfnfm.f φF:YX
4 fmfnfm.fm φXFilMapFBL
5 filin LFilXyLzLyzL
6 5 3expb LFilXyLzLyzL
7 2 6 sylan φyLzLyzL
8 ffun F:YXFunF
9 funcnvcnv FunFFunF-1-1
10 imain FunF-1-1F-1yz=F-1yF-1z
11 10 eqcomd FunF-1-1F-1yF-1z=F-1yz
12 3 8 9 11 4syl φF-1yF-1z=F-1yz
13 12 adantr φyLzLF-1yF-1z=F-1yz
14 imaeq2 x=yzF-1x=F-1yz
15 14 rspceeqv yzLF-1yF-1z=F-1yzxLF-1yF-1z=F-1x
16 7 13 15 syl2anc φyLzLxLF-1yF-1z=F-1x
17 ineq12 s=F-1yt=F-1zst=F-1yF-1z
18 17 eqeq1d s=F-1yt=F-1zst=F-1xF-1yF-1z=F-1x
19 18 rexbidv s=F-1yt=F-1zxLst=F-1xxLF-1yF-1z=F-1x
20 16 19 syl5ibrcom φyLzLs=F-1yt=F-1zxLst=F-1x
21 20 rexlimdvva φyLzLs=F-1yt=F-1zxLst=F-1x
22 imaeq2 x=yF-1x=F-1y
23 22 eqeq2d x=ys=F-1xs=F-1y
24 23 cbvrexvw xLs=F-1xyLs=F-1y
25 imaeq2 x=zF-1x=F-1z
26 25 eqeq2d x=zt=F-1xt=F-1z
27 26 cbvrexvw xLt=F-1xzLt=F-1z
28 24 27 anbi12i xLs=F-1xxLt=F-1xyLs=F-1yzLt=F-1z
29 eqid xLF-1x=xLF-1x
30 29 elrnmpt sVsranxLF-1xxLs=F-1x
31 30 elv sranxLF-1xxLs=F-1x
32 29 elrnmpt tVtranxLF-1xxLt=F-1x
33 32 elv tranxLF-1xxLt=F-1x
34 31 33 anbi12i sranxLF-1xtranxLF-1xxLs=F-1xxLt=F-1x
35 reeanv yLzLs=F-1yt=F-1zyLs=F-1yzLt=F-1z
36 28 34 35 3bitr4i sranxLF-1xtranxLF-1xyLzLs=F-1yt=F-1z
37 vex sV
38 37 inex1 stV
39 29 elrnmpt stVstranxLF-1xxLst=F-1x
40 38 39 ax-mp stranxLF-1xxLst=F-1x
41 21 36 40 3imtr4g φsranxLF-1xtranxLF-1xstranxLF-1x
42 41 ralrimivv φsranxLF-1xtranxLF-1xstranxLF-1x
43 mptexg LFilXxLF-1xV
44 rnexg xLF-1xVranxLF-1xV
45 inficl ranxLF-1xVsranxLF-1xtranxLF-1xstranxLF-1xfiranxLF-1x=ranxLF-1x
46 2 43 44 45 4syl φsranxLF-1xtranxLF-1xstranxLF-1xfiranxLF-1x=ranxLF-1x
47 42 46 mpbid φfiranxLF-1x=ranxLF-1x