Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fmfnfm.b | |
|
fmfnfm.l | |
||
fmfnfm.f | |
||
fmfnfm.fm | |
||
Assertion | fmfnfmlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmfnfm.b | |
|
2 | fmfnfm.l | |
|
3 | fmfnfm.f | |
|
4 | fmfnfm.fm | |
|
5 | filin | |
|
6 | 5 | 3expb | |
7 | 2 6 | sylan | |
8 | ffun | |
|
9 | funcnvcnv | |
|
10 | imain | |
|
11 | 10 | eqcomd | |
12 | 3 8 9 11 | 4syl | |
13 | 12 | adantr | |
14 | imaeq2 | |
|
15 | 14 | rspceeqv | |
16 | 7 13 15 | syl2anc | |
17 | ineq12 | |
|
18 | 17 | eqeq1d | |
19 | 18 | rexbidv | |
20 | 16 19 | syl5ibrcom | |
21 | 20 | rexlimdvva | |
22 | imaeq2 | |
|
23 | 22 | eqeq2d | |
24 | 23 | cbvrexvw | |
25 | imaeq2 | |
|
26 | 25 | eqeq2d | |
27 | 26 | cbvrexvw | |
28 | 24 27 | anbi12i | |
29 | eqid | |
|
30 | 29 | elrnmpt | |
31 | 30 | elv | |
32 | 29 | elrnmpt | |
33 | 32 | elv | |
34 | 31 33 | anbi12i | |
35 | reeanv | |
|
36 | 28 34 35 | 3bitr4i | |
37 | vex | |
|
38 | 37 | inex1 | |
39 | 29 | elrnmpt | |
40 | 38 39 | ax-mp | |
41 | 21 36 40 | 3imtr4g | |
42 | 41 | ralrimivv | |
43 | mptexg | |
|
44 | rnexg | |
|
45 | inficl | |
|
46 | 2 43 44 45 | 4syl | |
47 | 42 46 | mpbid | |