Metamath Proof Explorer


Theorem fmtnorec4

Description: The fourth recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties . (Contributed by AV, 31-Jul-2021)

Ref Expression
Assertion fmtnorec4 N2FermatNoN=FermatNoN122FermatNoN212

Proof

Step Hyp Ref Expression
1 eluz2nn N2N
2 nnm1nn0 NN10
3 1 2 syl N2N10
4 fmtno N10FermatNoN1=22N1+1
5 3 4 syl N2FermatNoN1=22N1+1
6 5 oveq1d N2FermatNoN12=22N1+12
7 2nn 2
8 7 a1i N22
9 2nn0 20
10 9 a1i N220
11 10 3 nn0expcld N22N10
12 8 11 nnexpcld N222N1
13 12 nncnd N222N1
14 binom21 22N122N1+12=22N12+222N1+1
15 13 14 syl N222N1+12=22N12+222N1+1
16 2cn 2
17 16 a1i N22
18 17 10 11 expmuld N222N12=22N12
19 17 3 expp1d N22N-1+1=2N12
20 1 nncnd N2N
21 npcan1 NN-1+1=N
22 20 21 syl N2N-1+1=N
23 22 oveq2d N22N-1+1=2N
24 19 23 eqtr3d N22N12=2N
25 24 oveq2d N222N12=22N
26 18 25 eqtr3d N222N12=22N
27 26 oveq1d N222N12+222N1=22N+222N1
28 27 oveq1d N222N12+222N1+1=22N+222N1+1
29 6 15 28 3eqtrd N2FermatNoN12=22N+222N1+1
30 uznn0sub N2N20
31 fmtno N20FermatNoN2=22N2+1
32 30 31 syl N2FermatNoN2=22N2+1
33 32 oveq1d N2FermatNoN21=22N2+1-1
34 33 oveq1d N2FermatNoN212=22N2+1-12
35 10 30 nn0expcld N22N20
36 8 35 nnexpcld N222N2
37 36 nncnd N222N2
38 peano2cn 22N222N2+1
39 37 38 syl N222N2+1
40 binom2sub1 22N2+122N2+1-12=22N2+12-222N2+1+1
41 39 40 syl N222N2+1-12=22N2+12-222N2+1+1
42 binom21 22N222N2+12=22N22+222N2+1
43 37 42 syl N222N2+12=22N22+222N2+1
44 43 oveq1d N222N2+12222N2+1=22N22+222N2+1-222N2+1
45 44 oveq1d N222N2+12-222N2+1+1=22N22+222N2+1-222N2+1+1
46 34 41 45 3eqtrd N2FermatNoN212=22N22+222N2+1-222N2+1+1
47 46 oveq2d N22FermatNoN212=222N22+222N2+1-222N2+1+1
48 29 47 oveq12d N2FermatNoN122FermatNoN212=22N+222N1+1-222N22+222N2+1-222N2+1+1
49 36 10 nnexpcld N222N22
50 49 nncnd N222N22
51 17 37 mulcld N2222N2
52 50 51 addcld N222N22+222N2
53 peano2cn 22N22+222N222N22+222N2+1
54 52 53 syl N222N22+222N2+1
55 17 39 mulcld N2222N2+1
56 54 55 subcld N222N22+222N2+1-222N2+1
57 1cnd N21
58 17 56 57 adddid N2222N22+222N2+1-222N2+1+1=222N22+222N2+1-222N2+1+21
59 52 57 addcld N222N22+222N2+1
60 17 59 55 subdid N2222N22+222N2+1-222N2+1=222N22+222N2+12222N2+1
61 17 52 57 adddid N2222N22+222N2+1=222N22+222N2+21
62 17 50 51 adddid N2222N22+222N2=222N22+2222N2
63 17 10 35 expmuld N222N22=22N22
64 17 30 expp1d N22N-2+1=2N22
65 20 17 57 subsubd N2N21=N-2+1
66 65 eqcomd N2N-2+1=N21
67 66 oveq2d N22N-2+1=2N21
68 64 67 eqtr3d N22N22=2N21
69 68 oveq2d N222N22=22N21
70 63 69 eqtr3d N222N22=22N21
71 70 oveq2d N2222N22=222N21
72 2m1e1 21=1
73 72 a1i N221=1
74 73 oveq2d N2N21=N1
75 74 oveq2d N22N21=2N1
76 75 oveq2d N222N21=22N1
77 76 oveq2d N2222N21=222N1
78 71 77 eqtrd N2222N22=222N1
79 17 17 37 mulassd N22222N2=2222N2
80 79 eqcomd N22222N2=2222N2
81 78 80 oveq12d N2222N22+2222N2=222N1+2222N2
82 62 81 eqtrd N2222N22+222N2=222N1+2222N2
83 2t1e2 21=2
84 83 a1i N221=2
85 82 84 oveq12d N2222N22+222N2+21=222N1+2222N2+2
86 61 85 eqtrd N2222N22+222N2+1=222N1+2222N2+2
87 17 37 57 adddid N2222N2+1=222N2+21
88 84 oveq2d N2222N2+21=222N2+2
89 87 88 eqtrd N2222N2+1=222N2+2
90 89 oveq2d N22222N2+1=2222N2+2
91 17 51 17 adddid N22222N2+2=2222N2+22
92 2t2e4 22=4
93 92 a1i N222=4
94 80 93 oveq12d N22222N2+22=2222N2+4
95 90 91 94 3eqtrd N22222N2+1=2222N2+4
96 86 95 oveq12d N2222N22+222N2+12222N2+1=222N1+2222N2+2-2222N2+4
97 60 96 eqtrd N2222N22+222N2+1-222N2+1=222N1+2222N2+2-2222N2+4
98 97 84 oveq12d N2222N22+222N2+1-222N2+1+21=222N1+2222N2+2-2222N2+4+2
99 58 98 eqtrd N2222N22+222N2+1-222N2+1+1=222N1+2222N2+2-2222N2+4+2
100 99 oveq2d N222N+222N1+1-222N22+222N2+1-222N2+1+1=22N+222N1+1-222N1+2222N2+2-2222N2+4+2
101 17 13 mulcld N2222N1
102 16 16 mulcli 22
103 102 a1i N222
104 103 37 mulcld N22222N2
105 101 104 addcld N2222N1+2222N2
106 105 17 addcld N2222N1+2222N2+2
107 4cn 4
108 107 a1i N24
109 104 108 addcld N22222N2+4
110 105 17 17 addassd N2222N1+2222N2+2+2=222N1+2222N2+2+2
111 2p2e4 2+2=4
112 111 a1i N22+2=4
113 112 oveq2d N2222N1+2222N2+2+2=222N1+2222N2+4
114 101 104 108 addassd N2222N1+2222N2+4=222N1+2222N2+4
115 110 113 114 3eqtrd N2222N1+2222N2+2+2=222N1+2222N2+4
116 106 17 101 109 115 subaddeqd N2222N1+2222N2+2-2222N2+4=222N12
117 116 eqcomd N2222N12=222N1+2222N2+2-2222N2+4
118 106 109 subcld N2222N1+2222N2+2-2222N2+4
119 101 17 118 subadd2d N2222N12=222N1+2222N2+2-2222N2+4222N1+2222N2+2-2222N2+4+2=222N1
120 117 119 mpbid N2222N1+2222N2+2-2222N2+4+2=222N1
121 120 oveq2d N222N+222N1+2222N2+2-2222N2+4+2=22N+222N1
122 eluzge2nn0 N2N0
123 10 122 nn0expcld N22N0
124 8 123 nnexpcld N222N
125 124 nncnd N222N
126 125 101 addcld N222N+222N1
127 118 17 addcld N2222N1+2222N2+2-2222N2+4+2
128 126 127 125 subadd2d N222N+222N1-222N1+2222N2+2-2222N2+4+2=22N22N+222N1+2222N2+2-2222N2+4+2=22N+222N1
129 121 128 mpbird N222N+222N1-222N1+2222N2+2-2222N2+4+2=22N
130 129 oveq1d N222N+222N1-222N1+2222N2+2-2222N2+4+2+1=22N+1
131 126 57 127 addsubd N222N+222N1+1-222N1+2222N2+2-2222N2+4+2=22N+222N1-222N1+2222N2+2-2222N2+4+2+1
132 fmtno N0FermatNoN=22N+1
133 122 132 syl N2FermatNoN=22N+1
134 130 131 133 3eqtr4d N222N+222N1+1-222N1+2222N2+2-2222N2+4+2=FermatNoN
135 48 100 134 3eqtrrd N2FermatNoN=FermatNoN122FermatNoN212