Metamath Proof Explorer


Theorem fouriercnp

Description: If F is continuous at the point X , then its Fourier series at X , converges to ( FX ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fouriercnp.f φF:
fouriercnp.t T=2π
fouriercnp.per φxFx+T=Fx
fouriercnp.g G=Fππ
fouriercnp.dmdv φππdomGFin
fouriercnp.dvcn φG:domGcn
fouriercnp.rlim φxππdomGGx+∞limx
fouriercnp.llim φxππdomGG−∞xlimx
fouriercnp.j J=topGenran.
fouriercnp.cnp φFJCnPJX
fouriercnp.a A=n0ππFxcosnxdxπ
fouriercnp.b B=nππFxsinnxdxπ
Assertion fouriercnp φA02+nAncosnX+BnsinnX=FX

Proof

Step Hyp Ref Expression
1 fouriercnp.f φF:
2 fouriercnp.t T=2π
3 fouriercnp.per φxFx+T=Fx
4 fouriercnp.g G=Fππ
5 fouriercnp.dmdv φππdomGFin
6 fouriercnp.dvcn φG:domGcn
7 fouriercnp.rlim φxππdomGGx+∞limx
8 fouriercnp.llim φxππdomGG−∞xlimx
9 fouriercnp.j J=topGenran.
10 fouriercnp.cnp φFJCnPJX
11 fouriercnp.a A=n0ππFxcosnxdxπ
12 fouriercnp.b B=nππFxsinnxdxπ
13 uniretop =topGenran.
14 9 unieqi J=topGenran.
15 13 14 eqtr4i =J
16 15 cnprcl FJCnPJXX
17 10 16 syl φX
18 limcresi FlimXF−∞XlimX
19 eqid TopOpenfld=TopOpenfld
20 19 tgioo2 topGenran.=TopOpenfld𝑡
21 9 20 eqtri J=TopOpenfld𝑡
22 21 oveq2i JCnPJ=JCnPTopOpenfld𝑡
23 22 fveq1i JCnPJX=JCnPTopOpenfld𝑡X
24 10 23 eleqtrdi φFJCnPTopOpenfld𝑡X
25 19 cnfldtop TopOpenfldTop
26 25 a1i φTopOpenfldTop
27 ax-resscn
28 27 a1i φ
29 unicntop =TopOpenfld
30 15 29 cnprest2 TopOpenfldTopF:FJCnPTopOpenfldXFJCnPTopOpenfld𝑡X
31 26 1 28 30 syl3anc φFJCnPTopOpenfldXFJCnPTopOpenfld𝑡X
32 24 31 mpbird φFJCnPTopOpenfldX
33 19 21 cnplimc XFJCnPTopOpenfldXF:FXFlimX
34 27 17 33 sylancr φFJCnPTopOpenfldXF:FXFlimX
35 32 34 mpbid φF:FXFlimX
36 35 simprd φFXFlimX
37 18 36 sselid φFXF−∞XlimX
38 limcresi FlimXFX+∞limX
39 38 36 sselid φFXFX+∞limX
40 1 2 3 4 5 6 7 8 17 37 39 11 12 fourierd φA02+nAncosnX+BnsinnX=FX+FX2
41 1 17 ffvelcdmd φFX
42 41 recnd φFX
43 42 2timesd φ2FX=FX+FX
44 43 eqcomd φFX+FX=2FX
45 44 oveq1d φFX+FX2=2FX2
46 2cnd φ2
47 2ne0 20
48 47 a1i φ20
49 42 46 48 divcan3d φ2FX2=FX
50 40 45 49 3eqtrd φA02+nAncosnX+BnsinnX=FX