Description: If F is continuous at the point X , then its Fourier series at X , converges to ( FX ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fouriercnp.f | |
|
fouriercnp.t | |
||
fouriercnp.per | |
||
fouriercnp.g | |
||
fouriercnp.dmdv | |
||
fouriercnp.dvcn | |
||
fouriercnp.rlim | |
||
fouriercnp.llim | |
||
fouriercnp.j | |
||
fouriercnp.cnp | |
||
fouriercnp.a | |
||
fouriercnp.b | |
||
Assertion | fouriercnp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fouriercnp.f | |
|
2 | fouriercnp.t | |
|
3 | fouriercnp.per | |
|
4 | fouriercnp.g | |
|
5 | fouriercnp.dmdv | |
|
6 | fouriercnp.dvcn | |
|
7 | fouriercnp.rlim | |
|
8 | fouriercnp.llim | |
|
9 | fouriercnp.j | |
|
10 | fouriercnp.cnp | |
|
11 | fouriercnp.a | |
|
12 | fouriercnp.b | |
|
13 | uniretop | |
|
14 | 9 | unieqi | |
15 | 13 14 | eqtr4i | |
16 | 15 | cnprcl | |
17 | 10 16 | syl | |
18 | limcresi | |
|
19 | eqid | |
|
20 | 19 | tgioo2 | |
21 | 9 20 | eqtri | |
22 | 21 | oveq2i | |
23 | 22 | fveq1i | |
24 | 10 23 | eleqtrdi | |
25 | 19 | cnfldtop | |
26 | 25 | a1i | |
27 | ax-resscn | |
|
28 | 27 | a1i | |
29 | unicntop | |
|
30 | 15 29 | cnprest2 | |
31 | 26 1 28 30 | syl3anc | |
32 | 24 31 | mpbird | |
33 | 19 21 | cnplimc | |
34 | 27 17 33 | sylancr | |
35 | 32 34 | mpbid | |
36 | 35 | simprd | |
37 | 18 36 | sselid | |
38 | limcresi | |
|
39 | 38 36 | sselid | |
40 | 1 2 3 4 5 6 7 8 17 37 39 11 12 | fourierd | |
41 | 1 17 | ffvelcdmd | |
42 | 41 | recnd | |
43 | 42 | 2timesd | |
44 | 43 | eqcomd | |
45 | 44 | oveq1d | |
46 | 2cnd | |
|
47 | 2ne0 | |
|
48 | 47 | a1i | |
49 | 42 46 48 | divcan3d | |
50 | 40 45 49 | 3eqtrd | |