Metamath Proof Explorer


Theorem fourierdlem53

Description: The limit of F ( s ) at ( X + D ) is the limit of F ( X + s ) at D . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem53.1 φ F :
fourierdlem53.2 φ X
fourierdlem53.3 φ A
fourierdlem53.g G = s A F X + s
fourierdlem53.xps φ s A X + s B
fourierdlem53.b φ B
fourierdlem53.sned φ s A s D
fourierdlem53.c φ C F B lim X + D
fourierdlem53.d φ D
Assertion fourierdlem53 φ C G lim D

Proof

Step Hyp Ref Expression
1 fourierdlem53.1 φ F :
2 fourierdlem53.2 φ X
3 fourierdlem53.3 φ A
4 fourierdlem53.g G = s A F X + s
5 fourierdlem53.xps φ s A X + s B
6 fourierdlem53.b φ B
7 fourierdlem53.sned φ s A s D
8 fourierdlem53.c φ C F B lim X + D
9 fourierdlem53.d φ D
10 1 6 fssresd φ F B : B
11 10 fdmd φ dom F B = B
12 11 eqcomd φ B = dom F B
13 12 adantr φ s A B = dom F B
14 5 13 eleqtrd φ s A X + s dom F B
15 2 recnd φ X
16 15 adantr φ s A X
17 3 sselda φ s A s
18 17 recnd φ s A s
19 9 adantr φ s A D
20 16 18 19 7 addneintrd φ s A X + s X + D
21 20 neneqd φ s A ¬ X + s = X + D
22 2 adantr φ s A X
23 22 17 readdcld φ s A X + s
24 elsng X + s X + s X + D X + s = X + D
25 23 24 syl φ s A X + s X + D X + s = X + D
26 21 25 mtbird φ s A ¬ X + s X + D
27 14 26 eldifd φ s A X + s dom F B X + D
28 27 ralrimiva φ s A X + s dom F B X + D
29 eqid s A X + s = s A X + s
30 29 rnmptss s A X + s dom F B X + D ran s A X + s dom F B X + D
31 28 30 syl φ ran s A X + s dom F B X + D
32 eqid s A X = s A X
33 eqid s A s = s A s
34 ax-resscn
35 3 34 sstrdi φ A
36 32 35 15 9 constlimc φ X s A X lim D
37 35 33 9 idlimc φ D s A s lim D
38 32 33 29 16 18 36 37 addlimc φ X + D s A X + s lim D
39 31 38 8 limccog φ C F B s A X + s lim D
40 simpr φ y ran s A X + s y ran s A X + s
41 29 elrnmpt y ran s A X + s y ran s A X + s s A y = X + s
42 41 adantl φ y ran s A X + s y ran s A X + s s A y = X + s
43 40 42 mpbid φ y ran s A X + s s A y = X + s
44 nfv s φ
45 nfmpt1 _ s s A X + s
46 45 nfrn _ s ran s A X + s
47 46 nfcri s y ran s A X + s
48 44 47 nfan s φ y ran s A X + s
49 nfv s y B
50 simp3 φ s A y = X + s y = X + s
51 5 3adant3 φ s A y = X + s X + s B
52 50 51 eqeltrd φ s A y = X + s y B
53 52 3exp φ s A y = X + s y B
54 53 adantr φ y ran s A X + s s A y = X + s y B
55 48 49 54 rexlimd φ y ran s A X + s s A y = X + s y B
56 43 55 mpd φ y ran s A X + s y B
57 56 ralrimiva φ y ran s A X + s y B
58 dfss3 ran s A X + s B y ran s A X + s y B
59 57 58 sylibr φ ran s A X + s B
60 cores ran s A X + s B F B s A X + s = F s A X + s
61 59 60 syl φ F B s A X + s = F s A X + s
62 23 29 fmptd φ s A X + s : A
63 fcompt F : s A X + s : A F s A X + s = x A F s A X + s x
64 1 62 63 syl2anc φ F s A X + s = x A F s A X + s x
65 4 a1i φ G = s A F X + s
66 oveq2 s = x X + s = X + x
67 66 fveq2d s = x F X + s = F X + x
68 67 cbvmptv s A F X + s = x A F X + x
69 68 a1i φ s A F X + s = x A F X + x
70 eqidd φ x A s A X + s = s A X + s
71 66 adantl φ x A s = x X + s = X + x
72 simpr φ x A x A
73 2 adantr φ x A X
74 3 sselda φ x A x
75 73 74 readdcld φ x A X + x
76 70 71 72 75 fvmptd φ x A s A X + s x = X + x
77 76 eqcomd φ x A X + x = s A X + s x
78 77 fveq2d φ x A F X + x = F s A X + s x
79 78 mpteq2dva φ x A F X + x = x A F s A X + s x
80 65 69 79 3eqtrrd φ x A F s A X + s x = G
81 61 64 80 3eqtrd φ F B s A X + s = G
82 81 oveq1d φ F B s A X + s lim D = G lim D
83 39 82 eleqtrd φ C G lim D