Metamath Proof Explorer


Theorem fpprel2

Description: An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023)

Ref Expression
Assertion fpprel2 XFPPr2X2XOddX2XmodX=2

Proof

Step Hyp Ref Expression
1 2nn 2
2 fpprel 2XFPPr2X4X2X1modX=1
3 1 2 mp1i XFPPr2XFPPr2X4X2X1modX=1
4 eluz4eluz2 X4X2
5 4 3ad2ant1 X4X2X1modX=1X2
6 5 adantl XFPPr2X4X2X1modX=1X2
7 fppr2odd XFPPr2XOdd
8 7 adantr XFPPr2X4X2X1modX=1XOdd
9 simpr2 XFPPr2X4X2X1modX=1X
10 6 8 9 3jca XFPPr2X4X2X1modX=1X2XOddX
11 fpprwppr XFPPr22XmodX=2modX
12 2re 2
13 12 a1i X42
14 eluz4nn X4X
15 14 nnrpd X4X+
16 0le2 02
17 16 a1i X402
18 eluz2 X44X4X
19 4z 4
20 zlem1lt 4X4X41<X
21 19 20 mpan X4X41<X
22 4m1e3 41=3
23 22 breq1i 41<X3<X
24 12 a1i X3<X2
25 3re 3
26 25 a1i X3<X3
27 zre XX
28 27 adantr X3<XX
29 2lt3 2<3
30 29 a1i X3<X2<3
31 simpr X3<X3<X
32 24 26 28 30 31 lttrd X3<X2<X
33 32 ex X3<X2<X
34 23 33 biimtrid X41<X2<X
35 21 34 sylbid X4X2<X
36 35 a1i 4X4X2<X
37 36 3imp 4X4X2<X
38 18 37 sylbi X42<X
39 modid 2X+022<X2modX=2
40 13 15 17 38 39 syl22anc X42modX=2
41 40 3ad2ant1 X4X2X1modX=12modX=2
42 11 41 sylan9eq XFPPr2X4X2X1modX=12XmodX=2
43 10 42 jca XFPPr2X4X2X1modX=1X2XOddX2XmodX=2
44 43 ex XFPPr2X4X2X1modX=1X2XOddX2XmodX=2
45 3 44 sylbid XFPPr2XFPPr2X2XOddX2XmodX=2
46 45 pm2.43i XFPPr2X2XOddX2XmodX=2
47 ge2nprmge4 X2XX4
48 47 3adant2 X2XOddXX4
49 simp3 X2XOddXX
50 48 49 jca X2XOddXX4X
51 50 adantr X2XOddX2XmodX=2X4X
52 1 a1i X2XOddX2XmodX=22
53 12 a1i X2XOddX2
54 eluz2nn X2X
55 54 nnrpd X2X+
56 55 3ad2ant1 X2XOddXX+
57 16 a1i X2XOddX02
58 48 38 syl X2XOddX2<X
59 53 56 57 58 39 syl22anc X2XOddX2modX=2
60 59 eqcomd X2XOddX2=2modX
61 60 eqeq2d X2XOddX2XmodX=22XmodX=2modX
62 61 biimpa X2XOddX2XmodX=22XmodX=2modX
63 52 62 jca X2XOddX2XmodX=222XmodX=2modX
64 gcd2odd1 XOddXgcd2=1
65 64 3ad2ant2 X2XOddXXgcd2=1
66 65 adantr X2XOddX2XmodX=2Xgcd2=1
67 fpprwpprb Xgcd2=1XFPPr2X4X22XmodX=2modX
68 66 67 syl X2XOddX2XmodX=2XFPPr2X4X22XmodX=2modX
69 51 63 68 mpbir2and X2XOddX2XmodX=2XFPPr2
70 46 69 impbii XFPPr2X2XOddX2XmodX=2