Description: An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | fpprel2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn | |
|
2 | fpprel | |
|
3 | 1 2 | mp1i | |
4 | eluz4eluz2 | |
|
5 | 4 | 3ad2ant1 | |
6 | 5 | adantl | |
7 | fppr2odd | |
|
8 | 7 | adantr | |
9 | simpr2 | |
|
10 | 6 8 9 | 3jca | |
11 | fpprwppr | |
|
12 | 2re | |
|
13 | 12 | a1i | |
14 | eluz4nn | |
|
15 | 14 | nnrpd | |
16 | 0le2 | |
|
17 | 16 | a1i | |
18 | eluz2 | |
|
19 | 4z | |
|
20 | zlem1lt | |
|
21 | 19 20 | mpan | |
22 | 4m1e3 | |
|
23 | 22 | breq1i | |
24 | 12 | a1i | |
25 | 3re | |
|
26 | 25 | a1i | |
27 | zre | |
|
28 | 27 | adantr | |
29 | 2lt3 | |
|
30 | 29 | a1i | |
31 | simpr | |
|
32 | 24 26 28 30 31 | lttrd | |
33 | 32 | ex | |
34 | 23 33 | biimtrid | |
35 | 21 34 | sylbid | |
36 | 35 | a1i | |
37 | 36 | 3imp | |
38 | 18 37 | sylbi | |
39 | modid | |
|
40 | 13 15 17 38 39 | syl22anc | |
41 | 40 | 3ad2ant1 | |
42 | 11 41 | sylan9eq | |
43 | 10 42 | jca | |
44 | 43 | ex | |
45 | 3 44 | sylbid | |
46 | 45 | pm2.43i | |
47 | ge2nprmge4 | |
|
48 | 47 | 3adant2 | |
49 | simp3 | |
|
50 | 48 49 | jca | |
51 | 50 | adantr | |
52 | 1 | a1i | |
53 | 12 | a1i | |
54 | eluz2nn | |
|
55 | 54 | nnrpd | |
56 | 55 | 3ad2ant1 | |
57 | 16 | a1i | |
58 | 48 38 | syl | |
59 | 53 56 57 58 39 | syl22anc | |
60 | 59 | eqcomd | |
61 | 60 | eqeq2d | |
62 | 61 | biimpa | |
63 | 52 62 | jca | |
64 | gcd2odd1 | |
|
65 | 64 | 3ad2ant2 | |
66 | 65 | adantr | |
67 | fpprwpprb | |
|
68 | 66 67 | syl | |
69 | 51 63 68 | mpbir2and | |
70 | 46 69 | impbii | |