Metamath Proof Explorer


Theorem fprodabs2

Description: The absolute value of a finite product . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodabs2.a φAFin
fprodabs2.b φkAB
Assertion fprodabs2 φkAB=kAB

Proof

Step Hyp Ref Expression
1 fprodabs2.a φAFin
2 fprodabs2.b φkAB
3 prodeq1 x=kxB=kB
4 3 fveq2d x=kxB=kB
5 prodeq1 x=kxB=kB
6 4 5 eqeq12d x=kxB=kxBkB=kB
7 prodeq1 x=ykxB=kyB
8 7 fveq2d x=ykxB=kyB
9 prodeq1 x=ykxB=kyB
10 8 9 eqeq12d x=ykxB=kxBkyB=kyB
11 prodeq1 x=yzkxB=kyzB
12 11 fveq2d x=yzkxB=kyzB
13 prodeq1 x=yzkxB=kyzB
14 12 13 eqeq12d x=yzkxB=kxBkyzB=kyzB
15 prodeq1 x=AkxB=kAB
16 15 fveq2d x=AkxB=kAB
17 prodeq1 x=AkxB=kAB
18 16 17 eqeq12d x=AkxB=kxBkAB=kAB
19 abs1 1=1
20 prod0 kB=1
21 20 fveq2i kB=1
22 prod0 kB=1
23 19 21 22 3eqtr4i kB=kB
24 23 a1i φkB=kB
25 eqidd φyAzAykyB=kyBkyBz/kB=kyBz/kB
26 nfv kφyAzAy
27 nfcsb1v _kz/kB
28 1 adantr φyAAFin
29 simpr φyAyA
30 ssfi AFinyAyFin
31 28 29 30 syl2anc φyAyFin
32 31 adantrr φyAzAyyFin
33 simprr φyAzAyzAy
34 33 eldifbd φyAzAy¬zy
35 simpll φyAzAykyφ
36 29 sselda φyAkykA
37 36 adantlrr φyAzAykykA
38 35 37 2 syl2anc φyAzAykyB
39 csbeq1a k=zB=z/kB
40 simpl φyAzAyφ
41 33 eldifad φyAzAyzA
42 nfv kφzA
43 27 nfel1 kz/kB
44 42 43 nfim kφzAz/kB
45 eleq1w k=zkAzA
46 45 anbi2d k=zφkAφzA
47 39 eleq1d k=zBz/kB
48 46 47 imbi12d k=zφkABφzAz/kB
49 44 48 2 chvarfv φzAz/kB
50 40 41 49 syl2anc φyAzAyz/kB
51 26 27 32 33 34 38 39 50 fprodsplitsn φyAzAykyzB=kyBz/kB
52 51 adantr φyAzAykyB=kyBkyzB=kyBz/kB
53 52 fveq2d φyAzAykyB=kyBkyzB=kyBz/kB
54 26 32 38 fprodclf φyAzAykyB
55 54 50 absmuld φyAzAykyBz/kB=kyBz/kB
56 55 adantr φyAzAykyB=kyBkyBz/kB=kyBz/kB
57 oveq1 kyB=kyBkyBz/kB=kyBz/kB
58 57 adantl φyAzAykyB=kyBkyBz/kB=kyBz/kB
59 53 56 58 3eqtrd φyAzAykyB=kyBkyzB=kyBz/kB
60 nfcv _kabs
61 60 27 nffv _kz/kB
62 38 abscld φyAzAykyB
63 62 recnd φyAzAykyB
64 39 fveq2d k=zB=z/kB
65 50 abscld φyAzAyz/kB
66 65 recnd φyAzAyz/kB
67 26 61 32 33 34 63 64 66 fprodsplitsn φyAzAykyzB=kyBz/kB
68 67 adantr φyAzAykyB=kyBkyzB=kyBz/kB
69 25 59 68 3eqtr4d φyAzAykyB=kyBkyzB=kyzB
70 69 ex φyAzAykyB=kyBkyzB=kyzB
71 6 10 14 18 24 70 1 findcard2d φkAB=kAB