Metamath Proof Explorer


Theorem frgpupf

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpup.b B=BaseH
frgpup.n N=invgH
frgpup.t T=yI,z2𝑜ifz=FyNFy
frgpup.h φHGrp
frgpup.i φIV
frgpup.a φF:IB
frgpup.w W=IWordI×2𝑜
frgpup.r ˙=~FGI
frgpup.g G=freeGrpI
frgpup.x X=BaseG
frgpup.e E=rangWg˙HTg
Assertion frgpupf φE:XB

Proof

Step Hyp Ref Expression
1 frgpup.b B=BaseH
2 frgpup.n N=invgH
3 frgpup.t T=yI,z2𝑜ifz=FyNFy
4 frgpup.h φHGrp
5 frgpup.i φIV
6 frgpup.a φF:IB
7 frgpup.w W=IWordI×2𝑜
8 frgpup.r ˙=~FGI
9 frgpup.g G=freeGrpI
10 frgpup.x X=BaseG
11 frgpup.e E=rangWg˙HTg
12 4 grpmndd φHMnd
13 fviss IWordI×2𝑜WordI×2𝑜
14 7 13 eqsstri WWordI×2𝑜
15 14 sseli gWgWordI×2𝑜
16 1 2 3 4 5 6 frgpuptf φT:I×2𝑜B
17 wrdco gWordI×2𝑜T:I×2𝑜BTgWordB
18 15 16 17 syl2anr φgWTgWordB
19 1 gsumwcl HMndTgWordBHTgB
20 12 18 19 syl2an2r φgWHTgB
21 7 8 efger ˙ErW
22 21 a1i φ˙ErW
23 7 fvexi WV
24 23 a1i φWV
25 coeq2 g=hTg=Th
26 25 oveq2d g=hHTg=HTh
27 1 2 3 4 5 6 7 8 frgpuplem φg˙hHTg=HTh
28 11 20 22 24 26 27 qliftfund φFunE
29 11 20 22 24 qliftf φFunEE:W/˙B
30 28 29 mpbid φE:W/˙B
31 eqid freeMndI×2𝑜=freeMndI×2𝑜
32 9 31 8 frgpval IVG=freeMndI×2𝑜/𝑠˙
33 5 32 syl φG=freeMndI×2𝑜/𝑠˙
34 2on 2𝑜On
35 xpexg IV2𝑜OnI×2𝑜V
36 5 34 35 sylancl φI×2𝑜V
37 wrdexg I×2𝑜VWordI×2𝑜V
38 fvi WordI×2𝑜VIWordI×2𝑜=WordI×2𝑜
39 36 37 38 3syl φIWordI×2𝑜=WordI×2𝑜
40 7 39 eqtrid φW=WordI×2𝑜
41 eqid BasefreeMndI×2𝑜=BasefreeMndI×2𝑜
42 31 41 frmdbas I×2𝑜VBasefreeMndI×2𝑜=WordI×2𝑜
43 36 42 syl φBasefreeMndI×2𝑜=WordI×2𝑜
44 40 43 eqtr4d φW=BasefreeMndI×2𝑜
45 8 fvexi ˙V
46 45 a1i φ˙V
47 fvexd φfreeMndI×2𝑜V
48 33 44 46 47 qusbas φW/˙=BaseG
49 10 48 eqtr4id φX=W/˙
50 49 feq2d φE:XBE:W/˙B
51 30 50 mpbird φE:XB