Metamath Proof Explorer


Theorem frrlem4

Description: Lemma for well-founded recursion. Properties of the restriction of an acceptable function to the domain of another acceptable function. (Contributed by Paul Chapman, 21-Apr-2012)

Ref Expression
Hypothesis frrlem4.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
Assertion frrlem4 gBhBgdomgdomhFndomgdomhadomgdomhgdomgdomha=aGgdomgdomhPredRdomgdomha

Proof

Step Hyp Ref Expression
1 frrlem4.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
2 1 frrlem2 gBFung
3 2 funfnd gBgFndomg
4 fnresin1 gFndomggdomgdomhFndomgdomh
5 3 4 syl gBgdomgdomhFndomgdomh
6 5 adantr gBhBgdomgdomhFndomgdomh
7 1 frrlem1 B=g|bgFnbbAabPredRAababga=aGgPredRAa
8 7 eqabri gBbgFnbbAabPredRAababga=aGgPredRAa
9 fndm gFnbdomg=b
10 9 adantr gFnbbAabPredRAabdomg=b
11 10 raleqdv gFnbbAabPredRAabadomgga=aGgPredRAaabga=aGgPredRAa
12 11 biimp3ar gFnbbAabPredRAababga=aGgPredRAaadomgga=aGgPredRAa
13 rsp adomgga=aGgPredRAaadomgga=aGgPredRAa
14 12 13 syl gFnbbAabPredRAababga=aGgPredRAaadomgga=aGgPredRAa
15 14 exlimiv bgFnbbAabPredRAababga=aGgPredRAaadomgga=aGgPredRAa
16 8 15 sylbi gBadomgga=aGgPredRAa
17 elinel1 adomgdomhadomg
18 16 17 impel gBadomgdomhga=aGgPredRAa
19 18 adantlr gBhBadomgdomhga=aGgPredRAa
20 simpr gBhBadomgdomhadomgdomh
21 20 fvresd gBhBadomgdomhgdomgdomha=ga
22 resres gdomgdomhPredRdomgdomha=gdomgdomhPredRdomgdomha
23 predss PredRdomgdomhadomgdomh
24 sseqin2 PredRdomgdomhadomgdomhdomgdomhPredRdomgdomha=PredRdomgdomha
25 23 24 mpbi domgdomhPredRdomgdomha=PredRdomgdomha
26 1 frrlem1 B=h|chFnccAacPredRAacacha=aGhPredRAa
27 26 eqabri hBchFnccAacPredRAacacha=aGhPredRAa
28 exdistrv bcgFnbbAabPredRAababga=aGgPredRAahFnccAacPredRAacacha=aGhPredRAabgFnbbAabPredRAababga=aGgPredRAachFnccAacPredRAacacha=aGhPredRAa
29 inss1 bcb
30 simpl2l gFnbbAabPredRAababga=aGgPredRAahFnccAacPredRAacacha=aGhPredRAabA
31 29 30 sstrid gFnbbAabPredRAababga=aGgPredRAahFnccAacPredRAacacha=aGhPredRAabcA
32 simp2r gFnbbAabPredRAababga=aGgPredRAaabPredRAab
33 simp2r hFnccAacPredRAacacha=aGhPredRAaacPredRAac
34 nfra1 aabPredRAab
35 nfra1 aacPredRAac
36 34 35 nfan aabPredRAabacPredRAac
37 elinel1 abcab
38 rsp abPredRAababPredRAab
39 37 38 syl5com abcabPredRAabPredRAab
40 elinel2 abcac
41 rsp acPredRAacacPredRAac
42 40 41 syl5com abcacPredRAacPredRAac
43 39 42 anim12d abcabPredRAabacPredRAacPredRAabPredRAac
44 ssin PredRAabPredRAacPredRAabc
45 44 biimpi PredRAabPredRAacPredRAabc
46 43 45 syl6com abPredRAabacPredRAacabcPredRAabc
47 36 46 ralrimi abPredRAabacPredRAacabcPredRAabc
48 32 33 47 syl2an gFnbbAabPredRAababga=aGgPredRAahFnccAacPredRAacacha=aGhPredRAaabcPredRAabc
49 simpl1 gFnbbAabPredRAababga=aGgPredRAahFnccAacPredRAacacha=aGhPredRAagFnb
50 49 fndmd gFnbbAabPredRAababga=aGgPredRAahFnccAacPredRAacacha=aGhPredRAadomg=b
51 simpr1 gFnbbAabPredRAababga=aGgPredRAahFnccAacPredRAacacha=aGhPredRAahFnc
52 51 fndmd gFnbbAabPredRAababga=aGgPredRAahFnccAacPredRAacacha=aGhPredRAadomh=c
53 ineq12 domg=bdomh=cdomgdomh=bc
54 53 sseq1d domg=bdomh=cdomgdomhAbcA
55 53 sseq2d domg=bdomh=cPredRAadomgdomhPredRAabc
56 53 55 raleqbidv domg=bdomh=cadomgdomhPredRAadomgdomhabcPredRAabc
57 54 56 anbi12d domg=bdomh=cdomgdomhAadomgdomhPredRAadomgdomhbcAabcPredRAabc
58 50 52 57 syl2anc gFnbbAabPredRAababga=aGgPredRAahFnccAacPredRAacacha=aGhPredRAadomgdomhAadomgdomhPredRAadomgdomhbcAabcPredRAabc
59 31 48 58 mpbir2and gFnbbAabPredRAababga=aGgPredRAahFnccAacPredRAacacha=aGhPredRAadomgdomhAadomgdomhPredRAadomgdomh
60 59 exlimivv bcgFnbbAabPredRAababga=aGgPredRAahFnccAacPredRAacacha=aGhPredRAadomgdomhAadomgdomhPredRAadomgdomh
61 28 60 sylbir bgFnbbAabPredRAababga=aGgPredRAachFnccAacPredRAacacha=aGhPredRAadomgdomhAadomgdomhPredRAadomgdomh
62 8 27 61 syl2anb gBhBdomgdomhAadomgdomhPredRAadomgdomh
63 62 adantr gBhBadomgdomhdomgdomhAadomgdomhPredRAadomgdomh
64 preddowncl domgdomhAadomgdomhPredRAadomgdomhadomgdomhPredRdomgdomha=PredRAa
65 63 20 64 sylc gBhBadomgdomhPredRdomgdomha=PredRAa
66 25 65 eqtrid gBhBadomgdomhdomgdomhPredRdomgdomha=PredRAa
67 66 reseq2d gBhBadomgdomhgdomgdomhPredRdomgdomha=gPredRAa
68 22 67 eqtrid gBhBadomgdomhgdomgdomhPredRdomgdomha=gPredRAa
69 68 oveq2d gBhBadomgdomhaGgdomgdomhPredRdomgdomha=aGgPredRAa
70 19 21 69 3eqtr4d gBhBadomgdomhgdomgdomha=aGgdomgdomhPredRdomgdomha
71 70 ralrimiva gBhBadomgdomhgdomgdomha=aGgdomgdomhPredRdomgdomha
72 6 71 jca gBhBgdomgdomhFndomgdomhadomgdomhgdomgdomha=aGgdomgdomhPredRdomgdomha