Description: Lemma for well-founded recursion. Properties of the restriction of an acceptable function to the domain of another acceptable function. (Contributed by Paul Chapman, 21-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frrlem4.1 | |
|
Assertion | frrlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem4.1 | |
|
2 | 1 | frrlem2 | |
3 | 2 | funfnd | |
4 | fnresin1 | |
|
5 | 3 4 | syl | |
6 | 5 | adantr | |
7 | 1 | frrlem1 | |
8 | 7 | eqabri | |
9 | fndm | |
|
10 | 9 | adantr | |
11 | 10 | raleqdv | |
12 | 11 | biimp3ar | |
13 | rsp | |
|
14 | 12 13 | syl | |
15 | 14 | exlimiv | |
16 | 8 15 | sylbi | |
17 | elinel1 | |
|
18 | 16 17 | impel | |
19 | 18 | adantlr | |
20 | simpr | |
|
21 | 20 | fvresd | |
22 | resres | |
|
23 | predss | |
|
24 | sseqin2 | |
|
25 | 23 24 | mpbi | |
26 | 1 | frrlem1 | |
27 | 26 | eqabri | |
28 | exdistrv | |
|
29 | inss1 | |
|
30 | simpl2l | |
|
31 | 29 30 | sstrid | |
32 | simp2r | |
|
33 | simp2r | |
|
34 | nfra1 | |
|
35 | nfra1 | |
|
36 | 34 35 | nfan | |
37 | elinel1 | |
|
38 | rsp | |
|
39 | 37 38 | syl5com | |
40 | elinel2 | |
|
41 | rsp | |
|
42 | 40 41 | syl5com | |
43 | 39 42 | anim12d | |
44 | ssin | |
|
45 | 44 | biimpi | |
46 | 43 45 | syl6com | |
47 | 36 46 | ralrimi | |
48 | 32 33 47 | syl2an | |
49 | simpl1 | |
|
50 | 49 | fndmd | |
51 | simpr1 | |
|
52 | 51 | fndmd | |
53 | ineq12 | |
|
54 | 53 | sseq1d | |
55 | 53 | sseq2d | |
56 | 53 55 | raleqbidv | |
57 | 54 56 | anbi12d | |
58 | 50 52 57 | syl2anc | |
59 | 31 48 58 | mpbir2and | |
60 | 59 | exlimivv | |
61 | 28 60 | sylbir | |
62 | 8 27 61 | syl2anb | |
63 | 62 | adantr | |
64 | preddowncl | |
|
65 | 63 20 64 | sylc | |
66 | 25 65 | eqtrid | |
67 | 66 | reseq2d | |
68 | 22 67 | eqtrid | |
69 | 68 | oveq2d | |
70 | 19 21 69 | 3eqtr4d | |
71 | 70 | ralrimiva | |
72 | 6 71 | jca | |