Metamath Proof Explorer


Theorem frrlem4

Description: Lemma for founded recursion. Properties of the restriction of an acceptable function to the domain of another acceptable function. (Contributed by Paul Chapman, 21-Apr-2012)

Ref Expression
Hypothesis frrlem4.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
Assertion frrlem4 g B h B g dom g dom h Fn dom g dom h a dom g dom h g dom g dom h a = a G g dom g dom h Pred R dom g dom h a

Proof

Step Hyp Ref Expression
1 frrlem4.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
2 1 frrlem2 g B Fun g
3 2 funfnd g B g Fn dom g
4 fnresin1 g Fn dom g g dom g dom h Fn dom g dom h
5 3 4 syl g B g dom g dom h Fn dom g dom h
6 5 adantr g B h B g dom g dom h Fn dom g dom h
7 1 frrlem1 B = g | b g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a
8 7 abeq2i g B b g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a
9 fndm g Fn b dom g = b
10 9 adantr g Fn b b A a b Pred R A a b dom g = b
11 10 raleqdv g Fn b b A a b Pred R A a b a dom g g a = a G g Pred R A a a b g a = a G g Pred R A a
12 11 biimp3ar g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a a dom g g a = a G g Pred R A a
13 rsp a dom g g a = a G g Pred R A a a dom g g a = a G g Pred R A a
14 12 13 syl g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a a dom g g a = a G g Pred R A a
15 14 exlimiv b g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a a dom g g a = a G g Pred R A a
16 8 15 sylbi g B a dom g g a = a G g Pred R A a
17 elinel1 a dom g dom h a dom g
18 16 17 impel g B a dom g dom h g a = a G g Pred R A a
19 18 adantlr g B h B a dom g dom h g a = a G g Pred R A a
20 simpr g B h B a dom g dom h a dom g dom h
21 20 fvresd g B h B a dom g dom h g dom g dom h a = g a
22 resres g dom g dom h Pred R dom g dom h a = g dom g dom h Pred R dom g dom h a
23 predss Pred R dom g dom h a dom g dom h
24 sseqin2 Pred R dom g dom h a dom g dom h dom g dom h Pred R dom g dom h a = Pred R dom g dom h a
25 23 24 mpbi dom g dom h Pred R dom g dom h a = Pred R dom g dom h a
26 1 frrlem1 B = h | c h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a
27 26 abeq2i h B c h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a
28 exdistrv b c g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a b g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a c h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a
29 inss1 b c b
30 simpl2l g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a b A
31 29 30 sstrid g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a b c A
32 simp2r g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a a b Pred R A a b
33 simp2r h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a a c Pred R A a c
34 nfra1 a a b Pred R A a b
35 nfra1 a a c Pred R A a c
36 34 35 nfan a a b Pred R A a b a c Pred R A a c
37 elinel1 a b c a b
38 rsp a b Pred R A a b a b Pred R A a b
39 37 38 syl5com a b c a b Pred R A a b Pred R A a b
40 elinel2 a b c a c
41 rsp a c Pred R A a c a c Pred R A a c
42 40 41 syl5com a b c a c Pred R A a c Pred R A a c
43 39 42 anim12d a b c a b Pred R A a b a c Pred R A a c Pred R A a b Pred R A a c
44 ssin Pred R A a b Pred R A a c Pred R A a b c
45 44 biimpi Pred R A a b Pred R A a c Pred R A a b c
46 43 45 syl6com a b Pred R A a b a c Pred R A a c a b c Pred R A a b c
47 36 46 ralrimi a b Pred R A a b a c Pred R A a c a b c Pred R A a b c
48 32 33 47 syl2an g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a a b c Pred R A a b c
49 simpl1 g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a g Fn b
50 49 fndmd g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a dom g = b
51 simpr1 g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a h Fn c
52 51 fndmd g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a dom h = c
53 ineq12 dom g = b dom h = c dom g dom h = b c
54 53 sseq1d dom g = b dom h = c dom g dom h A b c A
55 53 sseq2d dom g = b dom h = c Pred R A a dom g dom h Pred R A a b c
56 53 55 raleqbidv dom g = b dom h = c a dom g dom h Pred R A a dom g dom h a b c Pred R A a b c
57 54 56 anbi12d dom g = b dom h = c dom g dom h A a dom g dom h Pred R A a dom g dom h b c A a b c Pred R A a b c
58 50 52 57 syl2anc g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a dom g dom h A a dom g dom h Pred R A a dom g dom h b c A a b c Pred R A a b c
59 31 48 58 mpbir2and g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a dom g dom h A a dom g dom h Pred R A a dom g dom h
60 59 exlimivv b c g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a dom g dom h A a dom g dom h Pred R A a dom g dom h
61 28 60 sylbir b g Fn b b A a b Pred R A a b a b g a = a G g Pred R A a c h Fn c c A a c Pred R A a c a c h a = a G h Pred R A a dom g dom h A a dom g dom h Pred R A a dom g dom h
62 8 27 61 syl2anb g B h B dom g dom h A a dom g dom h Pred R A a dom g dom h
63 62 adantr g B h B a dom g dom h dom g dom h A a dom g dom h Pred R A a dom g dom h
64 preddowncl dom g dom h A a dom g dom h Pred R A a dom g dom h a dom g dom h Pred R dom g dom h a = Pred R A a
65 63 20 64 sylc g B h B a dom g dom h Pred R dom g dom h a = Pred R A a
66 25 65 syl5eq g B h B a dom g dom h dom g dom h Pred R dom g dom h a = Pred R A a
67 66 reseq2d g B h B a dom g dom h g dom g dom h Pred R dom g dom h a = g Pred R A a
68 22 67 syl5eq g B h B a dom g dom h g dom g dom h Pred R dom g dom h a = g Pred R A a
69 68 oveq2d g B h B a dom g dom h a G g dom g dom h Pred R dom g dom h a = a G g Pred R A a
70 19 21 69 3eqtr4d g B h B a dom g dom h g dom g dom h a = a G g dom g dom h Pred R dom g dom h a
71 70 ralrimiva g B h B a dom g dom h g dom g dom h a = a G g dom g dom h Pred R dom g dom h a
72 6 71 jca g B h B g dom g dom h Fn dom g dom h a dom g dom h g dom g dom h a = a G g dom g dom h Pred R dom g dom h a