| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsetsnf.a |  | 
						
							| 2 |  | fsetsnf.f |  | 
						
							| 3 | 1 2 | fsetsnf |  | 
						
							| 4 |  | vex |  | 
						
							| 5 |  | eqeq1 |  | 
						
							| 6 | 5 | rexbidv |  | 
						
							| 7 | 4 6 1 | elab2 |  | 
						
							| 8 |  | opeq2 |  | 
						
							| 9 | 8 | sneqd |  | 
						
							| 10 | 9 | eqeq2d |  | 
						
							| 11 | 10 | cbvrexvw |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 | 2 | a1i |  | 
						
							| 14 |  | opeq2 |  | 
						
							| 15 | 14 | sneqd |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 |  | snex |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 | 13 16 17 19 | fvmptd |  | 
						
							| 21 | 20 | eqcomd |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 12 22 | eqtrd |  | 
						
							| 24 | 23 | ex |  | 
						
							| 25 | 24 | reximdva |  | 
						
							| 26 | 11 25 | biimtrid |  | 
						
							| 27 | 7 26 | biimtrid |  | 
						
							| 28 | 27 | imp |  | 
						
							| 29 | 28 | ralrimiva |  | 
						
							| 30 |  | dffo3 |  | 
						
							| 31 | 3 29 30 | sylanbrc |  |