Metamath Proof Explorer


Theorem fsetsnfo

Description: The mapping of an element of a class to a singleton function is a surjection. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fsetsnf.a A=y|bBy=Sb
fsetsnf.f F=xBSx
Assertion fsetsnfo SVF:BontoA

Proof

Step Hyp Ref Expression
1 fsetsnf.a A=y|bBy=Sb
2 fsetsnf.f F=xBSx
3 1 2 fsetsnf SVF:BA
4 vex mV
5 eqeq1 y=my=Sbm=Sb
6 5 rexbidv y=mbBy=SbbBm=Sb
7 4 6 1 elab2 mAbBm=Sb
8 opeq2 b=nSb=Sn
9 8 sneqd b=nSb=Sn
10 9 eqeq2d b=nm=Sbm=Sn
11 10 cbvrexvw bBm=SbnBm=Sn
12 simpr SVnBm=Snm=Sn
13 2 a1i SVnBF=xBSx
14 opeq2 x=nSx=Sn
15 14 sneqd x=nSx=Sn
16 15 adantl SVnBx=nSx=Sn
17 simpr SVnBnB
18 snex SnV
19 18 a1i SVnBSnV
20 13 16 17 19 fvmptd SVnBFn=Sn
21 20 eqcomd SVnBSn=Fn
22 21 adantr SVnBm=SnSn=Fn
23 12 22 eqtrd SVnBm=Snm=Fn
24 23 ex SVnBm=Snm=Fn
25 24 reximdva SVnBm=SnnBm=Fn
26 11 25 biimtrid SVbBm=SbnBm=Fn
27 7 26 biimtrid SVmAnBm=Fn
28 27 imp SVmAnBm=Fn
29 28 ralrimiva SVmAnBm=Fn
30 dffo3 F:BontoAF:BAmAnBm=Fn
31 3 29 30 sylanbrc SVF:BontoA