Description: A serie with finite support is a finite sum, and therefore converges. (Contributed by Thierry Arnoux, 6-Sep-2017) (Revised by Thierry Arnoux, 1-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumcvg4.s | |
|
fsumcvg4.m | |
||
fsumcvg4.c | |
||
fsumcvg4.f | |
||
Assertion | fsumcvg4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumcvg4.s | |
|
2 | fsumcvg4.m | |
|
3 | fsumcvg4.c | |
|
4 | fsumcvg4.f | |
|
5 | ffun | |
|
6 | difpreima | |
|
7 | 3 5 6 | 3syl | |
8 | difss | |
|
9 | 7 8 | eqsstrdi | |
10 | fimacnv | |
|
11 | 3 10 | syl | |
12 | 9 11 | sseqtrd | |
13 | exmidd | |
|
14 | eqid | |
|
15 | 14 | biantru | |
16 | 15 | a1i | |
17 | 1 | fvexi | |
18 | 17 | a1i | |
19 | 0nn0 | |
|
20 | 19 | a1i | |
21 | eqid | |
|
22 | 21 | ffs2 | |
23 | 18 20 3 22 | syl3anc | |
24 | 3 | ffnd | |
25 | suppvalfn | |
|
26 | 24 18 20 25 | syl3anc | |
27 | 23 26 | eqtr3d | |
28 | 27 | eleq2d | |
29 | rabid | |
|
30 | 28 29 | bitrdi | |
31 | 30 | baibd | |
32 | 31 | necon2bbid | |
33 | 32 | biimprd | |
34 | 33 | pm4.71d | |
35 | 16 34 | orbi12d | |
36 | 13 35 | mpbid | |
37 | eqif | |
|
38 | 36 37 | sylibr | |
39 | 12 | sselda | |
40 | 3 | ffvelcdmda | |
41 | 39 40 | syldan | |
42 | 1 2 4 12 38 41 | fsumcvg3 | |