Metamath Proof Explorer


Theorem fsumcvg4

Description: A serie with finite support is a finite sum, and therefore converges. (Contributed by Thierry Arnoux, 6-Sep-2017) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypotheses fsumcvg4.s S=M
fsumcvg4.m φM
fsumcvg4.c φF:S
fsumcvg4.f φF-10Fin
Assertion fsumcvg4 φseqM+Fdom

Proof

Step Hyp Ref Expression
1 fsumcvg4.s S=M
2 fsumcvg4.m φM
3 fsumcvg4.c φF:S
4 fsumcvg4.f φF-10Fin
5 ffun F:SFunF
6 difpreima FunFF-10=F-1F-10
7 3 5 6 3syl φF-10=F-1F-10
8 difss F-1F-10F-1
9 7 8 eqsstrdi φF-10F-1
10 fimacnv F:SF-1=S
11 3 10 syl φF-1=S
12 9 11 sseqtrd φF-10S
13 exmidd φkSkF-10¬kF-10
14 eqid Fk=Fk
15 14 biantru kF-10kF-10Fk=Fk
16 15 a1i φkSkF-10kF-10Fk=Fk
17 1 fvexi SV
18 17 a1i φSV
19 0nn0 00
20 19 a1i φ00
21 eqid 0=0
22 21 ffs2 SV00F:SFsupp0=F-10
23 18 20 3 22 syl3anc φFsupp0=F-10
24 3 ffnd φFFnS
25 suppvalfn FFnSSV00Fsupp0=kS|Fk0
26 24 18 20 25 syl3anc φFsupp0=kS|Fk0
27 23 26 eqtr3d φF-10=kS|Fk0
28 27 eleq2d φkF-10kkS|Fk0
29 rabid kkS|Fk0kSFk0
30 28 29 bitrdi φkF-10kSFk0
31 30 baibd φkSkF-10Fk0
32 31 necon2bbid φkSFk=0¬kF-10
33 32 biimprd φkS¬kF-10Fk=0
34 33 pm4.71d φkS¬kF-10¬kF-10Fk=0
35 16 34 orbi12d φkSkF-10¬kF-10kF-10Fk=Fk¬kF-10Fk=0
36 13 35 mpbid φkSkF-10Fk=Fk¬kF-10Fk=0
37 eqif Fk=ifkF-10Fk0kF-10Fk=Fk¬kF-10Fk=0
38 36 37 sylibr φkSFk=ifkF-10Fk0
39 12 sselda φkF-10kS
40 3 ffvelcdmda φkSFk
41 39 40 syldan φkF-10Fk
42 1 2 4 12 38 41 fsumcvg3 φseqM+Fdom