| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumcvg4.s |  | 
						
							| 2 |  | fsumcvg4.m |  | 
						
							| 3 |  | fsumcvg4.c |  | 
						
							| 4 |  | fsumcvg4.f |  | 
						
							| 5 |  | ffun |  | 
						
							| 6 |  | difpreima |  | 
						
							| 7 | 3 5 6 | 3syl |  | 
						
							| 8 |  | difss |  | 
						
							| 9 | 7 8 | eqsstrdi |  | 
						
							| 10 |  | fimacnv |  | 
						
							| 11 | 3 10 | syl |  | 
						
							| 12 | 9 11 | sseqtrd |  | 
						
							| 13 |  | exmidd |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 14 | biantru |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 | 1 | fvexi |  | 
						
							| 18 | 17 | a1i |  | 
						
							| 19 |  | 0nn0 |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 21 | ffs2 |  | 
						
							| 23 | 18 20 3 22 | syl3anc |  | 
						
							| 24 | 3 | ffnd |  | 
						
							| 25 |  | suppvalfn |  | 
						
							| 26 | 24 18 20 25 | syl3anc |  | 
						
							| 27 | 23 26 | eqtr3d |  | 
						
							| 28 | 27 | eleq2d |  | 
						
							| 29 |  | rabid |  | 
						
							| 30 | 28 29 | bitrdi |  | 
						
							| 31 | 30 | baibd |  | 
						
							| 32 | 31 | necon2bbid |  | 
						
							| 33 | 32 | biimprd |  | 
						
							| 34 | 33 | pm4.71d |  | 
						
							| 35 | 16 34 | orbi12d |  | 
						
							| 36 | 13 35 | mpbid |  | 
						
							| 37 |  | eqif |  | 
						
							| 38 | 36 37 | sylibr |  | 
						
							| 39 | 12 | sselda |  | 
						
							| 40 | 3 | ffvelcdmda |  | 
						
							| 41 | 39 40 | syldan |  | 
						
							| 42 | 1 2 4 12 38 41 | fsumcvg3 |  |