Metamath Proof Explorer


Theorem fsumlesge0

Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fsumlesge0.x φXV
fsumlesge0.f φF:X0+∞
fsumlesge0.y φYX
fsumlesge0.fi φYFin
Assertion fsumlesge0 φxYFxsum^F

Proof

Step Hyp Ref Expression
1 fsumlesge0.x φXV
2 fsumlesge0.f φF:X0+∞
3 fsumlesge0.y φYX
4 fsumlesge0.fi φYFin
5 2 sge0rnre φrany𝒫XFinzyFz
6 ressxr *
7 6 a1i φ*
8 5 7 sstrd φrany𝒫XFinzyFz*
9 1 3 ssexd φYV
10 elpwg YVY𝒫XYX
11 9 10 syl φY𝒫XYX
12 3 11 mpbird φY𝒫X
13 12 4 elind φY𝒫XFin
14 fveq2 x=zFx=Fz
15 14 cbvsumv xYFx=zYFz
16 15 a1i φxYFx=zYFz
17 sumeq1 y=YzyFz=zYFz
18 17 rspceeqv Y𝒫XFinxYFx=zYFzy𝒫XFinxYFx=zyFz
19 13 16 18 syl2anc φy𝒫XFinxYFx=zyFz
20 sumex xYFxV
21 20 a1i φxYFxV
22 eqid y𝒫XFinzyFz=y𝒫XFinzyFz
23 22 elrnmpt xYFxVxYFxrany𝒫XFinzyFzy𝒫XFinxYFx=zyFz
24 21 23 syl φxYFxrany𝒫XFinzyFzy𝒫XFinxYFx=zyFz
25 19 24 mpbird φxYFxrany𝒫XFinzyFz
26 supxrub rany𝒫XFinzyFz*xYFxrany𝒫XFinzyFzxYFxsuprany𝒫XFinzyFz*<
27 8 25 26 syl2anc φxYFxsuprany𝒫XFinzyFz*<
28 1 2 sge0reval φsum^F=suprany𝒫XFinzyFz*<
29 28 eqcomd φsuprany𝒫XFinzyFz*<=sum^F
30 27 29 breqtrd φxYFxsum^F