Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumlesge0.x | |
|
fsumlesge0.f | |
||
fsumlesge0.y | |
||
fsumlesge0.fi | |
||
Assertion | fsumlesge0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumlesge0.x | |
|
2 | fsumlesge0.f | |
|
3 | fsumlesge0.y | |
|
4 | fsumlesge0.fi | |
|
5 | 2 | sge0rnre | |
6 | ressxr | |
|
7 | 6 | a1i | |
8 | 5 7 | sstrd | |
9 | 1 3 | ssexd | |
10 | elpwg | |
|
11 | 9 10 | syl | |
12 | 3 11 | mpbird | |
13 | 12 4 | elind | |
14 | fveq2 | |
|
15 | 14 | cbvsumv | |
16 | 15 | a1i | |
17 | sumeq1 | |
|
18 | 17 | rspceeqv | |
19 | 13 16 18 | syl2anc | |
20 | sumex | |
|
21 | 20 | a1i | |
22 | eqid | |
|
23 | 22 | elrnmpt | |
24 | 21 23 | syl | |
25 | 19 24 | mpbird | |
26 | supxrub | |
|
27 | 8 25 26 | syl2anc | |
28 | 1 2 | sge0reval | |
29 | 28 | eqcomd | |
30 | 27 29 | breqtrd | |