Metamath Proof Explorer


Theorem fuco22natlem

Description: The composed natural transformation is a natural transformation. Use fuco22nat instead. (New usage is discouraged.) (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco22natlem.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco22natlem.a φ A F G C Nat D M N
fuco22natlem.b φ B K L D Nat E R S
fuco22natlem.u φ U = K L F G
fuco22natlem.v φ V = R S M N
Assertion fuco22natlem φ B U P V A O U C Nat E O V

Proof

Step Hyp Ref Expression
1 fuco22natlem.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco22natlem.a φ A F G C Nat D M N
3 fuco22natlem.b φ B K L D Nat E R S
4 fuco22natlem.u φ U = K L F G
5 fuco22natlem.v φ V = R S M N
6 eqid C Nat E = C Nat E
7 eqid Base C = Base C
8 eqid Hom C = Hom C
9 eqid Hom E = Hom E
10 eqid comp E = comp E
11 eqid C Nat D = C Nat D
12 11 2 natrcl2 φ F C Func D G
13 eqid D Nat E = D Nat E
14 13 3 natrcl2 φ K D Func E L
15 1 12 14 4 7 fuco11a φ O U = K F z Base C , w Base C F z L F w z G w
16 1 12 14 4 fuco11cl φ O U C Func E
17 15 16 eqeltrrd φ K F z Base C , w Base C F z L F w z G w C Func E
18 df-br K F C Func E z Base C , w Base C F z L F w z G w K F z Base C , w Base C F z L F w z G w C Func E
19 17 18 sylibr φ K F C Func E z Base C , w Base C F z L F w z G w
20 11 2 natrcl3 φ M C Func D N
21 13 3 natrcl3 φ R D Func E S
22 1 20 21 5 7 fuco11a φ O V = R M z Base C , w Base C M z S M w z N w
23 1 20 21 5 fuco11cl φ O V C Func E
24 22 23 eqeltrrd φ R M z Base C , w Base C M z S M w z N w C Func E
25 df-br R M C Func E z Base C , w Base C M z S M w z N w R M z Base C , w Base C M z S M w z N w C Func E
26 24 25 sylibr φ R M C Func E z Base C , w Base C M z S M w z N w
27 1 4 5 2 3 fucofn22 φ B U P V A Fn Base C
28 eqid Base E = Base E
29 14 adantr φ x Base C K D Func E L
30 29 funcrcl3 φ x Base C E Cat
31 eqid Base D = Base D
32 31 28 29 funcf1 φ x Base C K : Base D Base E
33 12 adantr φ x Base C F C Func D G
34 7 31 33 funcf1 φ x Base C F : Base C Base D
35 simpr φ x Base C x Base C
36 34 35 ffvelcdmd φ x Base C F x Base D
37 32 36 ffvelcdmd φ x Base C K F x Base E
38 20 adantr φ x Base C M C Func D N
39 7 31 38 funcf1 φ x Base C M : Base C Base D
40 39 35 ffvelcdmd φ x Base C M x Base D
41 32 40 ffvelcdmd φ x Base C K M x Base E
42 21 adantr φ x Base C R D Func E S
43 31 28 42 funcf1 φ x Base C R : Base D Base E
44 43 40 ffvelcdmd φ x Base C R M x Base E
45 eqid Hom D = Hom D
46 31 45 9 29 36 40 funcf2 φ x Base C F x L M x : F x Hom D M x K F x Hom E K M x
47 2 adantr φ x Base C A F G C Nat D M N
48 11 47 7 45 35 natcl φ x Base C A x F x Hom D M x
49 46 48 ffvelcdmd φ x Base C F x L M x A x K F x Hom E K M x
50 3 adantr φ x Base C B K L D Nat E R S
51 7 31 20 funcf1 φ M : Base C Base D
52 51 ffvelcdmda φ x Base C M x Base D
53 13 50 31 9 52 natcl φ x Base C B M x K M x Hom E R M x
54 28 9 10 30 37 41 44 49 53 catcocl φ x Base C B M x K F x K M x comp E R M x F x L M x A x K F x Hom E R M x
55 1 adantr Could not format ( ( ph /\ x e. ( Base ` C ) ) -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ( ph /\ x e. ( Base ` C ) ) -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
56 4 adantr φ x Base C U = K L F G
57 5 adantr φ x Base C V = R S M N
58 eqidd φ x Base C K F x K M x comp E R M x = K F x K M x comp E R M x
59 55 56 57 47 50 35 58 fuco23 φ x Base C B U P V A x = B M x K F x K M x comp E R M x F x L M x A x
60 34 35 fvco3d φ x Base C K F x = K F x
61 39 35 fvco3d φ x Base C R M x = R M x
62 60 61 oveq12d φ x Base C K F x Hom E R M x = K F x Hom E R M x
63 54 59 62 3eltr4d φ x Base C B U P V A x K F x Hom E R M x
64 simplrl φ x Base C y Base C h x Hom C y x Base C
65 simplrr φ x Base C y Base C h x Hom C y y Base C
66 2 ad2antrr φ x Base C y Base C h x Hom C y A F G C Nat D M N
67 simpr φ x Base C y Base C h x Hom C y h x Hom C y
68 3 ad2antrr φ x Base C y Base C h x Hom C y B K L D Nat E R S
69 1 ad2antrr Could not format ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ h e. ( x ( Hom ` C ) y ) ) -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ h e. ( x ( Hom ` C ) y ) ) -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
70 4 ad2antrr φ x Base C y Base C h x Hom C y U = K L F G
71 5 ad2antrr φ x Base C y Base C h x Hom C y V = R S M N
72 64 65 66 67 68 69 70 71 fuco22natlem3 φ x Base C y Base C h x Hom C y B U P V A y K F x K F y comp E R M y F x L F y x G y h = M x S M y x N y h K F x R M x comp E R M y B U P V A x
73 fveq2 z = x F z = F x
74 73 oveq1d z = x F z L F w = F x L F w
75 oveq1 z = x z G w = x G w
76 74 75 coeq12d z = x F z L F w z G w = F x L F w x G w
77 fveq2 w = y F w = F y
78 77 oveq2d w = y F x L F w = F x L F y
79 oveq2 w = y x G w = x G y
80 78 79 coeq12d w = y F x L F w x G w = F x L F y x G y
81 eqid z Base C , w Base C F z L F w z G w = z Base C , w Base C F z L F w z G w
82 ovex F x L F y V
83 ovex x G y V
84 82 83 coex F x L F y x G y V
85 76 80 81 84 ovmpo x Base C y Base C x z Base C , w Base C F z L F w z G w y = F x L F y x G y
86 85 ad2antlr φ x Base C y Base C h x Hom C y x z Base C , w Base C F z L F w z G w y = F x L F y x G y
87 86 fveq1d φ x Base C y Base C h x Hom C y x z Base C , w Base C F z L F w z G w y h = F x L F y x G y h
88 87 oveq2d φ x Base C y Base C h x Hom C y B U P V A y K F x K F y comp E R M y x z Base C , w Base C F z L F w z G w y h = B U P V A y K F x K F y comp E R M y F x L F y x G y h
89 fveq2 z = x M z = M x
90 89 oveq1d z = x M z S M w = M x S M w
91 oveq1 z = x z N w = x N w
92 90 91 coeq12d z = x M z S M w z N w = M x S M w x N w
93 fveq2 w = y M w = M y
94 93 oveq2d w = y M x S M w = M x S M y
95 oveq2 w = y x N w = x N y
96 94 95 coeq12d w = y M x S M w x N w = M x S M y x N y
97 eqid z Base C , w Base C M z S M w z N w = z Base C , w Base C M z S M w z N w
98 ovex M x S M y V
99 ovex x N y V
100 98 99 coex M x S M y x N y V
101 92 96 97 100 ovmpo x Base C y Base C x z Base C , w Base C M z S M w z N w y = M x S M y x N y
102 101 ad2antlr φ x Base C y Base C h x Hom C y x z Base C , w Base C M z S M w z N w y = M x S M y x N y
103 102 fveq1d φ x Base C y Base C h x Hom C y x z Base C , w Base C M z S M w z N w y h = M x S M y x N y h
104 103 oveq1d φ x Base C y Base C h x Hom C y x z Base C , w Base C M z S M w z N w y h K F x R M x comp E R M y B U P V A x = M x S M y x N y h K F x R M x comp E R M y B U P V A x
105 72 88 104 3eqtr4d φ x Base C y Base C h x Hom C y B U P V A y K F x K F y comp E R M y x z Base C , w Base C F z L F w z G w y h = x z Base C , w Base C M z S M w z N w y h K F x R M x comp E R M y B U P V A x
106 6 7 8 9 10 19 26 27 63 105 isnatd φ B U P V A K F z Base C , w Base C F z L F w z G w C Nat E R M z Base C , w Base C M z S M w z N w
107 15 22 oveq12d φ O U C Nat E O V = K F z Base C , w Base C F z L F w z G w C Nat E R M z Base C , w Base C M z S M w z N w
108 106 107 eleqtrrd φ B U P V A O U C Nat E O V