Metamath Proof Explorer


Theorem funcsetcres2

Description: A functor into a smaller category of sets is a functor into the larger category. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses resssetc.c C=SetCatU
resssetc.d D=SetCatV
resssetc.1 φUW
resssetc.2 φVU
Assertion funcsetcres2 φEFuncDEFuncC

Proof

Step Hyp Ref Expression
1 resssetc.c C=SetCatU
2 resssetc.d D=SetCatV
3 resssetc.1 φUW
4 resssetc.2 φVU
5 eqidd φfEFuncDHom𝑓E=Hom𝑓E
6 eqidd φfEFuncDcomp𝑓E=comp𝑓E
7 eqid BaseC=BaseC
8 eqid Hom𝑓C=Hom𝑓C
9 1 setccat UWCCat
10 3 9 syl φCCat
11 10 adantr φfEFuncDCCat
12 1 3 setcbas φU=BaseC
13 4 12 sseqtrd φVBaseC
14 13 adantr φfEFuncDVBaseC
15 eqid C𝑠V=C𝑠V
16 eqid CcatHom𝑓CV×V=CcatHom𝑓CV×V
17 7 8 11 14 15 16 fullresc φfEFuncDHom𝑓C𝑠V=Hom𝑓CcatHom𝑓CV×Vcomp𝑓C𝑠V=comp𝑓CcatHom𝑓CV×V
18 17 simpld φfEFuncDHom𝑓C𝑠V=Hom𝑓CcatHom𝑓CV×V
19 1 2 3 4 resssetc φHom𝑓C𝑠V=Hom𝑓Dcomp𝑓C𝑠V=comp𝑓D
20 19 adantr φfEFuncDHom𝑓C𝑠V=Hom𝑓Dcomp𝑓C𝑠V=comp𝑓D
21 20 simpld φfEFuncDHom𝑓C𝑠V=Hom𝑓D
22 18 21 eqtr3d φfEFuncDHom𝑓CcatHom𝑓CV×V=Hom𝑓D
23 17 simprd φfEFuncDcomp𝑓C𝑠V=comp𝑓CcatHom𝑓CV×V
24 20 simprd φfEFuncDcomp𝑓C𝑠V=comp𝑓D
25 23 24 eqtr3d φfEFuncDcomp𝑓CcatHom𝑓CV×V=comp𝑓D
26 funcrcl fEFuncDECatDCat
27 26 adantl φfEFuncDECatDCat
28 27 simpld φfEFuncDECat
29 7 8 11 14 fullsubc φfEFuncDHom𝑓CV×VSubcatC
30 16 29 subccat φfEFuncDCcatHom𝑓CV×VCat
31 27 simprd φfEFuncDDCat
32 5 6 22 25 28 28 30 31 funcpropd φfEFuncDEFuncCcatHom𝑓CV×V=EFuncD
33 funcres2 Hom𝑓CV×VSubcatCEFuncCcatHom𝑓CV×VEFuncC
34 29 33 syl φfEFuncDEFuncCcatHom𝑓CV×VEFuncC
35 32 34 eqsstrrd φfEFuncDEFuncDEFuncC
36 simpr φfEFuncDfEFuncD
37 35 36 sseldd φfEFuncDfEFuncC
38 37 ex φfEFuncDfEFuncC
39 38 ssrdv φEFuncDEFuncC