Description: A functor into a smaller category of sets is a functor into the larger category. (Contributed by Mario Carneiro, 28-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resssetc.c | |
|
resssetc.d | |
||
resssetc.1 | |
||
resssetc.2 | |
||
Assertion | funcsetcres2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resssetc.c | |
|
2 | resssetc.d | |
|
3 | resssetc.1 | |
|
4 | resssetc.2 | |
|
5 | eqidd | |
|
6 | eqidd | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 1 | setccat | |
10 | 3 9 | syl | |
11 | 10 | adantr | |
12 | 1 3 | setcbas | |
13 | 4 12 | sseqtrd | |
14 | 13 | adantr | |
15 | eqid | |
|
16 | eqid | |
|
17 | 7 8 11 14 15 16 | fullresc | |
18 | 17 | simpld | |
19 | 1 2 3 4 | resssetc | |
20 | 19 | adantr | |
21 | 20 | simpld | |
22 | 18 21 | eqtr3d | |
23 | 17 | simprd | |
24 | 20 | simprd | |
25 | 23 24 | eqtr3d | |
26 | funcrcl | |
|
27 | 26 | adantl | |
28 | 27 | simpld | |
29 | 7 8 11 14 | fullsubc | |
30 | 16 29 | subccat | |
31 | 27 | simprd | |
32 | 5 6 22 25 28 28 30 31 | funcpropd | |
33 | funcres2 | |
|
34 | 29 33 | syl | |
35 | 32 34 | eqsstrrd | |
36 | simpr | |
|
37 | 35 36 | sseldd | |
38 | 37 | ex | |
39 | 38 | ssrdv | |