Metamath Proof Explorer


Theorem fundcmpsurbijinj

Description: Every function F : A --> B can be decomposed into a surjective, a bijective and an injective function. (Contributed by AV, 23-Mar-2024)

Ref Expression
Assertion fundcmpsurbijinj F:ABAVghipqg:Aontoph:p1-1 ontoqi:q1-1BF=ihg

Proof

Step Hyp Ref Expression
1 ffun F:ABFunF
2 funimaexg FunFAVFAV
3 1 2 sylan F:ABAVFAV
4 abrexexg AVz|yAz=F-1FyV
5 4 adantl F:ABAVz|yAz=F-1FyV
6 fveq2 y=xFy=Fx
7 6 sneqd y=xFy=Fx
8 7 imaeq2d y=xF-1Fy=F-1Fx
9 8 eqeq2d y=xz=F-1Fyz=F-1Fx
10 9 cbvrexvw yAz=F-1FyxAz=F-1Fx
11 10 abbii z|yAz=F-1Fy=z|xAz=F-1Fx
12 11 fundcmpsurbijinjpreimafv F:ABAVghig:Aontoz|yAz=F-1Fyh:z|yAz=F-1Fy1-1 ontoFAi:FA1-1BF=ihg
13 foeq3 p=z|yAz=F-1Fyg:Aontopg:Aontoz|yAz=F-1Fy
14 13 adantl q=FAp=z|yAz=F-1Fyg:Aontopg:Aontoz|yAz=F-1Fy
15 f1oeq23 p=z|yAz=F-1Fyq=FAh:p1-1 ontoqh:z|yAz=F-1Fy1-1 ontoFA
16 15 ancoms q=FAp=z|yAz=F-1Fyh:p1-1 ontoqh:z|yAz=F-1Fy1-1 ontoFA
17 f1eq2 q=FAi:q1-1Bi:FA1-1B
18 17 adantr q=FAp=z|yAz=F-1Fyi:q1-1Bi:FA1-1B
19 14 16 18 3anbi123d q=FAp=z|yAz=F-1Fyg:Aontoph:p1-1 ontoqi:q1-1Bg:Aontoz|yAz=F-1Fyh:z|yAz=F-1Fy1-1 ontoFAi:FA1-1B
20 19 anbi1d q=FAp=z|yAz=F-1Fyg:Aontoph:p1-1 ontoqi:q1-1BF=ihgg:Aontoz|yAz=F-1Fyh:z|yAz=F-1Fy1-1 ontoFAi:FA1-1BF=ihg
21 20 3exbidv q=FAp=z|yAz=F-1Fyghig:Aontoph:p1-1 ontoqi:q1-1BF=ihgghig:Aontoz|yAz=F-1Fyh:z|yAz=F-1Fy1-1 ontoFAi:FA1-1BF=ihg
22 21 spc2egv FAVz|yAz=F-1FyVghig:Aontoz|yAz=F-1Fyh:z|yAz=F-1Fy1-1 ontoFAi:FA1-1BF=ihgqpghig:Aontoph:p1-1 ontoqi:q1-1BF=ihg
23 22 imp FAVz|yAz=F-1FyVghig:Aontoz|yAz=F-1Fyh:z|yAz=F-1Fy1-1 ontoFAi:FA1-1BF=ihgqpghig:Aontoph:p1-1 ontoqi:q1-1BF=ihg
24 3 5 12 23 syl21anc F:ABAVqpghig:Aontoph:p1-1 ontoqi:q1-1BF=ihg
25 exrot4 qpghig:Aontoph:p1-1 ontoqi:q1-1BF=ihgghqpig:Aontoph:p1-1 ontoqi:q1-1BF=ihg
26 excom13 qpig:Aontoph:p1-1 ontoqi:q1-1BF=ihgipqg:Aontoph:p1-1 ontoqi:q1-1BF=ihg
27 26 2exbii ghqpig:Aontoph:p1-1 ontoqi:q1-1BF=ihgghipqg:Aontoph:p1-1 ontoqi:q1-1BF=ihg
28 25 27 bitri qpghig:Aontoph:p1-1 ontoqi:q1-1BF=ihgghipqg:Aontoph:p1-1 ontoqi:q1-1BF=ihg
29 24 28 sylib F:ABAVghipqg:Aontoph:p1-1 ontoqi:q1-1BF=ihg