Description: If a class F is a proper subset of a function G , then dom F C. dom G . (Contributed by Scott Fenton, 20-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | fundmpss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssss | |
|
2 | dmss | |
|
3 | 1 2 | syl | |
4 | 3 | a1i | |
5 | pssdif | |
|
6 | n0 | |
|
7 | 5 6 | sylib | |
8 | 7 | adantl | |
9 | funrel | |
|
10 | reldif | |
|
11 | 9 10 | syl | |
12 | elrel | |
|
13 | eleq1 | |
|
14 | df-br | |
|
15 | 13 14 | bitr4di | |
16 | 15 | biimpcd | |
17 | 16 | adantl | |
18 | 17 | 2eximdv | |
19 | 12 18 | mpd | |
20 | 19 | ex | |
21 | 11 20 | syl | |
22 | 21 | adantr | |
23 | difss | |
|
24 | 23 | ssbri | |
25 | 24 | eximi | |
26 | 25 | a1i | |
27 | brdif | |
|
28 | 27 | simprbi | |
29 | 28 | adantl | |
30 | 1 | ssbrd | |
31 | 30 | ad2antlr | |
32 | dffun2 | |
|
33 | 32 | simprbi | |
34 | 2sp | |
|
35 | 34 | sps | |
36 | 33 35 | syl | |
37 | breq2 | |
|
38 | 37 | biimprd | |
39 | 36 38 | syl6 | |
40 | 39 | expd | |
41 | 27 | simplbi | |
42 | 40 41 | impel | |
43 | 42 | adantlr | |
44 | 43 | com23 | |
45 | 31 44 | mpdd | |
46 | 45 | exlimdv | |
47 | 29 46 | mtod | |
48 | 47 | ex | |
49 | 48 | exlimdv | |
50 | 26 49 | jcad | |
51 | 50 | eximdv | |
52 | 22 51 | syld | |
53 | 52 | exlimdv | |
54 | 8 53 | mpd | |
55 | nss | |
|
56 | vex | |
|
57 | 56 | eldm | |
58 | 56 | eldm | |
59 | 58 | notbii | |
60 | 57 59 | anbi12i | |
61 | 60 | exbii | |
62 | 55 61 | bitri | |
63 | 54 62 | sylibr | |
64 | 63 | ex | |
65 | 4 64 | jcad | |
66 | dfpss3 | |
|
67 | 65 66 | imbitrrdi | |