| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pssss |
|
| 2 |
|
dmss |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
a1i |
|
| 5 |
|
pssdif |
|
| 6 |
|
n0 |
|
| 7 |
5 6
|
sylib |
|
| 8 |
7
|
adantl |
|
| 9 |
|
funrel |
|
| 10 |
|
reldif |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
elrel |
|
| 13 |
|
eleq1 |
|
| 14 |
|
df-br |
|
| 15 |
13 14
|
bitr4di |
|
| 16 |
15
|
biimpcd |
|
| 17 |
16
|
adantl |
|
| 18 |
17
|
2eximdv |
|
| 19 |
12 18
|
mpd |
|
| 20 |
19
|
ex |
|
| 21 |
11 20
|
syl |
|
| 22 |
21
|
adantr |
|
| 23 |
|
difss |
|
| 24 |
23
|
ssbri |
|
| 25 |
24
|
eximi |
|
| 26 |
25
|
a1i |
|
| 27 |
|
brdif |
|
| 28 |
27
|
simprbi |
|
| 29 |
28
|
adantl |
|
| 30 |
1
|
ssbrd |
|
| 31 |
30
|
ad2antlr |
|
| 32 |
|
dffun2 |
|
| 33 |
32
|
simprbi |
|
| 34 |
|
2sp |
|
| 35 |
34
|
sps |
|
| 36 |
33 35
|
syl |
|
| 37 |
|
breq2 |
|
| 38 |
37
|
biimprd |
|
| 39 |
36 38
|
syl6 |
|
| 40 |
39
|
expd |
|
| 41 |
27
|
simplbi |
|
| 42 |
40 41
|
impel |
|
| 43 |
42
|
adantlr |
|
| 44 |
43
|
com23 |
|
| 45 |
31 44
|
mpdd |
|
| 46 |
45
|
exlimdv |
|
| 47 |
29 46
|
mtod |
|
| 48 |
47
|
ex |
|
| 49 |
48
|
exlimdv |
|
| 50 |
26 49
|
jcad |
|
| 51 |
50
|
eximdv |
|
| 52 |
22 51
|
syld |
|
| 53 |
52
|
exlimdv |
|
| 54 |
8 53
|
mpd |
|
| 55 |
|
nss |
|
| 56 |
|
vex |
|
| 57 |
56
|
eldm |
|
| 58 |
56
|
eldm |
|
| 59 |
58
|
notbii |
|
| 60 |
57 59
|
anbi12i |
|
| 61 |
60
|
exbii |
|
| 62 |
55 61
|
bitri |
|
| 63 |
54 62
|
sylibr |
|
| 64 |
63
|
ex |
|
| 65 |
4 64
|
jcad |
|
| 66 |
|
dfpss3 |
|
| 67 |
65 66
|
imbitrrdi |
|