Metamath Proof Explorer


Theorem fvcofneq

Description: The values of two function compositions are equal if the values of the composed functions are pairwise equal. (Contributed by AV, 26-Jan-2019)

Ref Expression
Assertion fvcofneq GFnAKFnBXABGX=KXxranGranKFx=HxFGX=HKX

Proof

Step Hyp Ref Expression
1 simpl GFnAKFnBGFnA
2 elinel1 XABXA
3 2 3ad2ant1 XABGX=KXxranGranKFx=HxXA
4 fvco2 GFnAXAFGX=FGX
5 1 3 4 syl2an GFnAKFnBXABGX=KXxranGranKFx=HxFGX=FGX
6 simpr GFnAKFnBKFnB
7 elinel2 XABXB
8 7 3ad2ant1 XABGX=KXxranGranKFx=HxXB
9 fvco2 KFnBXBHKX=HKX
10 6 8 9 syl2an GFnAKFnBXABGX=KXxranGranKFx=HxHKX=HKX
11 fveq2 KX=GXHKX=HGX
12 11 eqcoms GX=KXHKX=HGX
13 12 3ad2ant2 XABGX=KXxranGranKFx=HxHKX=HGX
14 13 adantl GFnAKFnBXABGX=KXxranGranKFx=HxHKX=HGX
15 id GFnAGFnA
16 fnfvelrn GFnAXAGXranG
17 15 2 16 syl2anr XABGFnAGXranG
18 17 ex XABGFnAGXranG
19 id KFnBKFnB
20 fnfvelrn KFnBXBKXranK
21 19 7 20 syl2anr XABKFnBKXranK
22 21 ex XABKFnBKXranK
23 18 22 anim12d XABGFnAKFnBGXranGKXranK
24 eleq1 KX=GXKXranKGXranK
25 24 eqcoms GX=KXKXranKGXranK
26 25 anbi2d GX=KXGXranGKXranKGXranGGXranK
27 elin GXranGranKGXranGGXranK
28 27 biimpri GXranGGXranKGXranGranK
29 26 28 syl6bi GX=KXGXranGKXranKGXranGranK
30 23 29 sylan9 XABGX=KXGFnAKFnBGXranGranK
31 fveq2 x=GXFx=FGX
32 fveq2 x=GXHx=HGX
33 31 32 eqeq12d x=GXFx=HxFGX=HGX
34 33 rspcva GXranGranKxranGranKFx=HxFGX=HGX
35 34 eqcomd GXranGranKxranGranKFx=HxHGX=FGX
36 35 ex GXranGranKxranGranKFx=HxHGX=FGX
37 30 36 syl6 XABGX=KXGFnAKFnBxranGranKFx=HxHGX=FGX
38 37 com23 XABGX=KXxranGranKFx=HxGFnAKFnBHGX=FGX
39 38 3impia XABGX=KXxranGranKFx=HxGFnAKFnBHGX=FGX
40 39 impcom GFnAKFnBXABGX=KXxranGranKFx=HxHGX=FGX
41 10 14 40 3eqtrrd GFnAKFnBXABGX=KXxranGranKFx=HxFGX=HKX
42 5 41 eqtrd GFnAKFnBXABGX=KXxranGranKFx=HxFGX=HKX
43 42 ex GFnAKFnBXABGX=KXxranGranKFx=HxFGX=HKX