| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  | 
						
							| 2 |  | fzolb |  | 
						
							| 3 | 1 2 | sylibr |  | 
						
							| 4 |  | simpr |  | 
						
							| 5 | 3 4 | eleqtrd |  | 
						
							| 6 |  | elfzouz |  | 
						
							| 7 |  | uzss |  | 
						
							| 8 | 5 6 7 | 3syl |  | 
						
							| 9 | 2 | biimpri |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | eleq2 |  | 
						
							| 12 | 11 | adantl |  | 
						
							| 13 | 10 12 | mpbid |  | 
						
							| 14 |  | elfzolt3b |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 | 15 4 | eleqtrrd |  | 
						
							| 17 |  | elfzouz |  | 
						
							| 18 |  | uzss |  | 
						
							| 19 | 16 17 18 | 3syl |  | 
						
							| 20 | 8 19 | eqssd |  | 
						
							| 21 |  | simpl1 |  | 
						
							| 22 |  | uz11 |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 | 20 23 | mpbid |  | 
						
							| 25 |  | fzoend |  | 
						
							| 26 |  | elfzoel2 |  | 
						
							| 27 |  | eleq2 |  | 
						
							| 28 | 27 | eqcoms |  | 
						
							| 29 |  | elfzo2 |  | 
						
							| 30 |  | simpl |  | 
						
							| 31 |  | simprl |  | 
						
							| 32 |  | zlem1lt |  | 
						
							| 33 | 32 | ancoms |  | 
						
							| 34 | 33 | biimprd |  | 
						
							| 35 | 34 | impancom |  | 
						
							| 36 | 35 | impcom |  | 
						
							| 37 | 30 31 36 | 3jca |  | 
						
							| 38 | 37 | expcom |  | 
						
							| 39 | 38 | 3adant1 |  | 
						
							| 40 | 39 | a1d |  | 
						
							| 41 | 29 40 | sylbi |  | 
						
							| 42 | 28 41 | biimtrdi |  | 
						
							| 43 | 42 | com23 |  | 
						
							| 44 | 43 | impcom |  | 
						
							| 45 | 44 | com13 |  | 
						
							| 46 | 26 45 | mpcom |  | 
						
							| 47 | 25 46 | syl |  | 
						
							| 48 | 15 47 | mpcom |  | 
						
							| 49 |  | eluz2 |  | 
						
							| 50 | 49 | biimpri |  | 
						
							| 51 |  | uzss |  | 
						
							| 52 | 48 50 51 | 3syl |  | 
						
							| 53 |  | fzoend |  | 
						
							| 54 |  | eleq2 |  | 
						
							| 55 |  | elfzo2 |  | 
						
							| 56 |  | pm3.2 |  | 
						
							| 57 | 56 | 3ad2ant2 |  | 
						
							| 58 | 57 | com12 |  | 
						
							| 59 | 58 | 3adant1 |  | 
						
							| 60 | 55 59 | sylbi |  | 
						
							| 61 | 54 60 | biimtrdi |  | 
						
							| 62 | 61 | com3l |  | 
						
							| 63 | 53 62 | syl |  | 
						
							| 64 | 9 63 | mpcom |  | 
						
							| 65 | 64 | imp |  | 
						
							| 66 |  | simpl |  | 
						
							| 67 |  | simprl |  | 
						
							| 68 |  | zlem1lt |  | 
						
							| 69 | 68 | ancoms |  | 
						
							| 70 | 69 | biimprd |  | 
						
							| 71 | 70 | impancom |  | 
						
							| 72 | 71 | impcom |  | 
						
							| 73 |  | eluz2 |  | 
						
							| 74 | 66 67 72 73 | syl3anbrc |  | 
						
							| 75 |  | uzss |  | 
						
							| 76 | 65 74 75 | 3syl |  | 
						
							| 77 | 52 76 | eqssd |  | 
						
							| 78 |  | simpl2 |  | 
						
							| 79 |  | uz11 |  | 
						
							| 80 | 78 79 | syl |  | 
						
							| 81 | 77 80 | mpbid |  | 
						
							| 82 | 24 81 | jca |  | 
						
							| 83 | 82 | ex |  | 
						
							| 84 |  | oveq12 |  | 
						
							| 85 | 83 84 | impbid1 |  |