Metamath Proof Explorer


Theorem fzoopth

Description: A half-open integer range can represent an ordered pair, analogous to fzopth . (Contributed by Alexander van der Vekens, 1-Jul-2018)

Ref Expression
Assertion fzoopth MNM<NM..^N=J..^KM=JN=K

Proof

Step Hyp Ref Expression
1 simpl MNM<NM..^N=J..^KMNM<N
2 fzolb MM..^NMNM<N
3 1 2 sylibr MNM<NM..^N=J..^KMM..^N
4 simpr MNM<NM..^N=J..^KM..^N=J..^K
5 3 4 eleqtrd MNM<NM..^N=J..^KMJ..^K
6 elfzouz MJ..^KMJ
7 uzss MJMJ
8 5 6 7 3syl MNM<NM..^N=J..^KMJ
9 2 biimpri MNM<NMM..^N
10 9 adantr MNM<NM..^N=J..^KMM..^N
11 eleq2 M..^N=J..^KMM..^NMJ..^K
12 11 adantl MNM<NM..^N=J..^KMM..^NMJ..^K
13 10 12 mpbid MNM<NM..^N=J..^KMJ..^K
14 elfzolt3b MJ..^KJJ..^K
15 13 14 syl MNM<NM..^N=J..^KJJ..^K
16 15 4 eleqtrrd MNM<NM..^N=J..^KJM..^N
17 elfzouz JM..^NJM
18 uzss JMJM
19 16 17 18 3syl MNM<NM..^N=J..^KJM
20 8 19 eqssd MNM<NM..^N=J..^KM=J
21 simpl1 MNM<NM..^N=J..^KM
22 uz11 MM=JM=J
23 21 22 syl MNM<NM..^N=J..^KM=JM=J
24 20 23 mpbid MNM<NM..^N=J..^KM=J
25 fzoend JJ..^KK1J..^K
26 elfzoel2 K1J..^KK
27 eleq2 J..^K=M..^NK1J..^KK1M..^N
28 27 eqcoms M..^N=J..^KK1J..^KK1M..^N
29 elfzo2 K1M..^NK1MNK1<N
30 simpl KNK1<NK
31 simprl KNK1<NN
32 zlem1lt KNKNK1<N
33 32 ancoms NKKNK1<N
34 33 biimprd NKK1<NKN
35 34 impancom NK1<NKKN
36 35 impcom KNK1<NKN
37 30 31 36 3jca KNK1<NKNKN
38 37 expcom NK1<NKKNKN
39 38 3adant1 K1MNK1<NKKNKN
40 39 a1d K1MNK1<NMNM<NKKNKN
41 29 40 sylbi K1M..^NMNM<NKKNKN
42 28 41 syl6bi M..^N=J..^KK1J..^KMNM<NKKNKN
43 42 com23 M..^N=J..^KMNM<NK1J..^KKKNKN
44 43 impcom MNM<NM..^N=J..^KK1J..^KKKNKN
45 44 com13 KK1J..^KMNM<NM..^N=J..^KKNKN
46 26 45 mpcom K1J..^KMNM<NM..^N=J..^KKNKN
47 25 46 syl JJ..^KMNM<NM..^N=J..^KKNKN
48 15 47 mpcom MNM<NM..^N=J..^KKNKN
49 eluz2 NKKNKN
50 49 biimpri KNKNNK
51 uzss NKNK
52 48 50 51 3syl MNM<NM..^N=J..^KNK
53 fzoend MM..^NN1M..^N
54 eleq2 M..^N=J..^KN1M..^NN1J..^K
55 elfzo2 N1J..^KN1JKN1<K
56 pm3.2 NKN1<KNKN1<K
57 56 3ad2ant2 MNM<NKN1<KNKN1<K
58 57 com12 KN1<KMNM<NNKN1<K
59 58 3adant1 N1JKN1<KMNM<NNKN1<K
60 55 59 sylbi N1J..^KMNM<NNKN1<K
61 54 60 syl6bi M..^N=J..^KN1M..^NMNM<NNKN1<K
62 61 com3l N1M..^NMNM<NM..^N=J..^KNKN1<K
63 53 62 syl MM..^NMNM<NM..^N=J..^KNKN1<K
64 9 63 mpcom MNM<NM..^N=J..^KNKN1<K
65 64 imp MNM<NM..^N=J..^KNKN1<K
66 simpl NKN1<KN
67 simprl NKN1<KK
68 zlem1lt NKNKN1<K
69 68 ancoms KNNKN1<K
70 69 biimprd KNN1<KNK
71 70 impancom KN1<KNNK
72 71 impcom NKN1<KNK
73 eluz2 KNNKNK
74 66 67 72 73 syl3anbrc NKN1<KKN
75 uzss KNKN
76 65 74 75 3syl MNM<NM..^N=J..^KKN
77 52 76 eqssd MNM<NM..^N=J..^KN=K
78 simpl2 MNM<NM..^N=J..^KN
79 uz11 NN=KN=K
80 78 79 syl MNM<NM..^N=J..^KN=KN=K
81 77 80 mpbid MNM<NM..^N=J..^KN=K
82 24 81 jca MNM<NM..^N=J..^KM=JN=K
83 82 ex MNM<NM..^N=J..^KM=JN=K
84 oveq12 M=JN=KM..^N=J..^K
85 83 84 impbid1 MNM<NM..^N=J..^KM=JN=K