Description: Gauss' Lemma (see also theorem 9.6 in ApostolNT p. 182) for integer 2 : Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gausslemma2d.p | |
|
gausslemma2d.h | |
||
gausslemma2d.r | |
||
gausslemma2d.m | |
||
gausslemma2d.n | |
||
Assertion | gausslemma2d | |