Metamath Proof Explorer


Theorem gbowgt5

Description: Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbowgt5 ZGoldbachOddW5<Z

Proof

Step Hyp Ref Expression
1 isgbow ZGoldbachOddWZOddpqrZ=p+q+r
2 prmuz2 pp2
3 eluz2 p22p2p
4 2 3 sylib p2p2p
5 prmuz2 qq2
6 eluz2 q22q2q
7 5 6 sylib q2q2q
8 4 7 anim12i pq2p2p2q2q
9 prmuz2 rr2
10 eluz2 r22r2r
11 9 10 sylib r2r2r
12 zre pp
13 12 3ad2ant2 2p2pp
14 zre qq
15 14 3ad2ant2 2q2qq
16 13 15 anim12i 2p2p2q2qpq
17 2re 2
18 17 17 pm3.2i 22
19 16 18 jctil 2p2p2q2q22pq
20 simp3 2p2p2p
21 simp3 2q2q2q
22 20 21 anim12i 2p2p2q2q2p2q
23 le2add 22pq2p2q2+2p+q
24 19 22 23 sylc 2p2p2q2q2+2p+q
25 2p2e4 2+2=4
26 25 breq1i 2+2p+q4p+q
27 zaddcl pqp+q
28 27 zred pqp+q
29 28 adantr pq4p+qp+q
30 zre rr
31 30 3ad2ant2 2r2rr
32 29 31 anim12i pq4p+q2r2rp+qr
33 4re 4
34 33 17 pm3.2i 42
35 32 34 jctil pq4p+q2r2r42p+qr
36 simpr pq4p+q4p+q
37 simp3 2r2r2r
38 36 37 anim12i pq4p+q2r2r4p+q2r
39 le2add 42p+qr4p+q2r4+2p+q+r
40 35 38 39 sylc pq4p+q2r2r4+2p+q+r
41 4p2e6 4+2=6
42 41 breq1i 4+2p+q+r6p+q+r
43 5lt6 5<6
44 5re 5
45 44 a1i pqr5
46 6re 6
47 46 a1i pqr6
48 27 adantr pqrp+q
49 simpr pqrr
50 48 49 zaddcld pqrp+q+r
51 50 zred pqrp+q+r
52 ltletr 56p+q+r5<66p+q+r5<p+q+r
53 45 47 51 52 syl3anc pqr5<66p+q+r5<p+q+r
54 43 53 mpani pqr6p+q+r5<p+q+r
55 42 54 biimtrid pqr4+2p+q+r5<p+q+r
56 55 expcom rpq4+2p+q+r5<p+q+r
57 56 3ad2ant2 2r2rpq4+2p+q+r5<p+q+r
58 57 com12 pq2r2r4+2p+q+r5<p+q+r
59 58 adantr pq4p+q2r2r4+2p+q+r5<p+q+r
60 59 imp pq4p+q2r2r4+2p+q+r5<p+q+r
61 40 60 mpd pq4p+q2r2r5<p+q+r
62 61 exp31 pq4p+q2r2r5<p+q+r
63 26 62 biimtrid pq2+2p+q2r2r5<p+q+r
64 63 expcom qp2+2p+q2r2r5<p+q+r
65 64 3ad2ant2 2q2qp2+2p+q2r2r5<p+q+r
66 65 com12 p2q2q2+2p+q2r2r5<p+q+r
67 66 3ad2ant2 2p2p2q2q2+2p+q2r2r5<p+q+r
68 67 imp 2p2p2q2q2+2p+q2r2r5<p+q+r
69 24 68 mpd 2p2p2q2q2r2r5<p+q+r
70 69 imp 2p2p2q2q2r2r5<p+q+r
71 breq2 Z=p+q+r5<Z5<p+q+r
72 70 71 syl5ibrcom 2p2p2q2q2r2rZ=p+q+r5<Z
73 8 11 72 syl2an pqrZ=p+q+r5<Z
74 73 rexlimdva pqrZ=p+q+r5<Z
75 74 adantl ZOddpqrZ=p+q+r5<Z
76 75 rexlimdvva ZOddpqrZ=p+q+r5<Z
77 76 imp ZOddpqrZ=p+q+r5<Z
78 1 77 sylbi ZGoldbachOddW5<Z