Metamath Proof Explorer


Theorem gbowgt5

Description: Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbowgt5 Z GoldbachOddW 5 < Z

Proof

Step Hyp Ref Expression
1 isgbow Z GoldbachOddW Z Odd p q r Z = p + q + r
2 prmuz2 p p 2
3 eluz2 p 2 2 p 2 p
4 2 3 sylib p 2 p 2 p
5 prmuz2 q q 2
6 eluz2 q 2 2 q 2 q
7 5 6 sylib q 2 q 2 q
8 4 7 anim12i p q 2 p 2 p 2 q 2 q
9 prmuz2 r r 2
10 eluz2 r 2 2 r 2 r
11 9 10 sylib r 2 r 2 r
12 zre p p
13 12 3ad2ant2 2 p 2 p p
14 zre q q
15 14 3ad2ant2 2 q 2 q q
16 13 15 anim12i 2 p 2 p 2 q 2 q p q
17 2re 2
18 17 17 pm3.2i 2 2
19 16 18 jctil 2 p 2 p 2 q 2 q 2 2 p q
20 simp3 2 p 2 p 2 p
21 simp3 2 q 2 q 2 q
22 20 21 anim12i 2 p 2 p 2 q 2 q 2 p 2 q
23 le2add 2 2 p q 2 p 2 q 2 + 2 p + q
24 19 22 23 sylc 2 p 2 p 2 q 2 q 2 + 2 p + q
25 2p2e4 2 + 2 = 4
26 25 breq1i 2 + 2 p + q 4 p + q
27 zaddcl p q p + q
28 27 zred p q p + q
29 28 adantr p q 4 p + q p + q
30 zre r r
31 30 3ad2ant2 2 r 2 r r
32 29 31 anim12i p q 4 p + q 2 r 2 r p + q r
33 4re 4
34 33 17 pm3.2i 4 2
35 32 34 jctil p q 4 p + q 2 r 2 r 4 2 p + q r
36 simpr p q 4 p + q 4 p + q
37 simp3 2 r 2 r 2 r
38 36 37 anim12i p q 4 p + q 2 r 2 r 4 p + q 2 r
39 le2add 4 2 p + q r 4 p + q 2 r 4 + 2 p + q + r
40 35 38 39 sylc p q 4 p + q 2 r 2 r 4 + 2 p + q + r
41 4p2e6 4 + 2 = 6
42 41 breq1i 4 + 2 p + q + r 6 p + q + r
43 5lt6 5 < 6
44 5re 5
45 44 a1i p q r 5
46 6re 6
47 46 a1i p q r 6
48 27 adantr p q r p + q
49 simpr p q r r
50 48 49 zaddcld p q r p + q + r
51 50 zred p q r p + q + r
52 ltletr 5 6 p + q + r 5 < 6 6 p + q + r 5 < p + q + r
53 45 47 51 52 syl3anc p q r 5 < 6 6 p + q + r 5 < p + q + r
54 43 53 mpani p q r 6 p + q + r 5 < p + q + r
55 42 54 syl5bi p q r 4 + 2 p + q + r 5 < p + q + r
56 55 expcom r p q 4 + 2 p + q + r 5 < p + q + r
57 56 3ad2ant2 2 r 2 r p q 4 + 2 p + q + r 5 < p + q + r
58 57 com12 p q 2 r 2 r 4 + 2 p + q + r 5 < p + q + r
59 58 adantr p q 4 p + q 2 r 2 r 4 + 2 p + q + r 5 < p + q + r
60 59 imp p q 4 p + q 2 r 2 r 4 + 2 p + q + r 5 < p + q + r
61 40 60 mpd p q 4 p + q 2 r 2 r 5 < p + q + r
62 61 exp31 p q 4 p + q 2 r 2 r 5 < p + q + r
63 26 62 syl5bi p q 2 + 2 p + q 2 r 2 r 5 < p + q + r
64 63 expcom q p 2 + 2 p + q 2 r 2 r 5 < p + q + r
65 64 3ad2ant2 2 q 2 q p 2 + 2 p + q 2 r 2 r 5 < p + q + r
66 65 com12 p 2 q 2 q 2 + 2 p + q 2 r 2 r 5 < p + q + r
67 66 3ad2ant2 2 p 2 p 2 q 2 q 2 + 2 p + q 2 r 2 r 5 < p + q + r
68 67 imp 2 p 2 p 2 q 2 q 2 + 2 p + q 2 r 2 r 5 < p + q + r
69 24 68 mpd 2 p 2 p 2 q 2 q 2 r 2 r 5 < p + q + r
70 69 imp 2 p 2 p 2 q 2 q 2 r 2 r 5 < p + q + r
71 breq2 Z = p + q + r 5 < Z 5 < p + q + r
72 70 71 syl5ibrcom 2 p 2 p 2 q 2 q 2 r 2 r Z = p + q + r 5 < Z
73 8 11 72 syl2an p q r Z = p + q + r 5 < Z
74 73 rexlimdva p q r Z = p + q + r 5 < Z
75 74 adantl Z Odd p q r Z = p + q + r 5 < Z
76 75 rexlimdvva Z Odd p q r Z = p + q + r 5 < Z
77 76 imp Z Odd p q r Z = p + q + r 5 < Z
78 1 77 sylbi Z GoldbachOddW 5 < Z