Description: Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | gbowgt5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgbow | |
|
2 | prmuz2 | |
|
3 | eluz2 | |
|
4 | 2 3 | sylib | |
5 | prmuz2 | |
|
6 | eluz2 | |
|
7 | 5 6 | sylib | |
8 | 4 7 | anim12i | |
9 | prmuz2 | |
|
10 | eluz2 | |
|
11 | 9 10 | sylib | |
12 | zre | |
|
13 | 12 | 3ad2ant2 | |
14 | zre | |
|
15 | 14 | 3ad2ant2 | |
16 | 13 15 | anim12i | |
17 | 2re | |
|
18 | 17 17 | pm3.2i | |
19 | 16 18 | jctil | |
20 | simp3 | |
|
21 | simp3 | |
|
22 | 20 21 | anim12i | |
23 | le2add | |
|
24 | 19 22 23 | sylc | |
25 | 2p2e4 | |
|
26 | 25 | breq1i | |
27 | zaddcl | |
|
28 | 27 | zred | |
29 | 28 | adantr | |
30 | zre | |
|
31 | 30 | 3ad2ant2 | |
32 | 29 31 | anim12i | |
33 | 4re | |
|
34 | 33 17 | pm3.2i | |
35 | 32 34 | jctil | |
36 | simpr | |
|
37 | simp3 | |
|
38 | 36 37 | anim12i | |
39 | le2add | |
|
40 | 35 38 39 | sylc | |
41 | 4p2e6 | |
|
42 | 41 | breq1i | |
43 | 5lt6 | |
|
44 | 5re | |
|
45 | 44 | a1i | |
46 | 6re | |
|
47 | 46 | a1i | |
48 | 27 | adantr | |
49 | simpr | |
|
50 | 48 49 | zaddcld | |
51 | 50 | zred | |
52 | ltletr | |
|
53 | 45 47 51 52 | syl3anc | |
54 | 43 53 | mpani | |
55 | 42 54 | biimtrid | |
56 | 55 | expcom | |
57 | 56 | 3ad2ant2 | |
58 | 57 | com12 | |
59 | 58 | adantr | |
60 | 59 | imp | |
61 | 40 60 | mpd | |
62 | 61 | exp31 | |
63 | 26 62 | biimtrid | |
64 | 63 | expcom | |
65 | 64 | 3ad2ant2 | |
66 | 65 | com12 | |
67 | 66 | 3ad2ant2 | |
68 | 67 | imp | |
69 | 24 68 | mpd | |
70 | 69 | imp | |
71 | breq2 | |
|
72 | 70 71 | syl5ibrcom | |
73 | 8 11 72 | syl2an | |
74 | 73 | rexlimdva | |
75 | 74 | adantl | |
76 | 75 | rexlimdvva | |
77 | 76 | imp | |
78 | 1 77 | sylbi | |