| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|
| 2 |
1
|
a1i |
|
| 3 |
|
xpsneng |
|
| 4 |
2 3
|
sylan2 |
|
| 5 |
4
|
ensymd |
|
| 6 |
|
df1o2 |
|
| 7 |
|
id |
|
| 8 |
|
0fi |
|
| 9 |
7 8
|
eqeltrdi |
|
| 10 |
9
|
necon3bi |
|
| 11 |
10
|
adantl |
|
| 12 |
|
0sdomg |
|
| 13 |
12
|
adantr |
|
| 14 |
11 13
|
mpbird |
|
| 15 |
|
0sdom1dom |
|
| 16 |
14 15
|
sylib |
|
| 17 |
6 16
|
eqbrtrrid |
|
| 18 |
|
xpdom2g |
|
| 19 |
17 18
|
syldan |
|
| 20 |
|
endomtr |
|
| 21 |
5 19 20
|
syl2anc |
|
| 22 |
|
canth2g |
|
| 23 |
22
|
adantr |
|
| 24 |
|
sdomdom |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
xpdom1g |
|
| 27 |
25 26
|
syldan |
|
| 28 |
|
pwexg |
|
| 29 |
28
|
adantr |
|
| 30 |
|
xpdom2g |
|
| 31 |
29 25 30
|
syl2anc |
|
| 32 |
|
domtr |
|
| 33 |
27 31 32
|
syl2anc |
|
| 34 |
|
simpl |
|
| 35 |
|
pwdjuen |
|
| 36 |
34 35
|
syldan |
|
| 37 |
36
|
ensymd |
|
| 38 |
|
gchdjuidm |
|
| 39 |
|
pwen |
|
| 40 |
38 39
|
syl |
|
| 41 |
|
entr |
|
| 42 |
37 40 41
|
syl2anc |
|
| 43 |
|
domentr |
|
| 44 |
33 42 43
|
syl2anc |
|
| 45 |
|
gchinf |
|
| 46 |
|
pwxpndom |
|
| 47 |
45 46
|
syl |
|
| 48 |
|
ensym |
|
| 49 |
|
endom |
|
| 50 |
48 49
|
syl |
|
| 51 |
47 50
|
nsyl |
|
| 52 |
|
brsdom |
|
| 53 |
44 51 52
|
sylanbrc |
|
| 54 |
21 53
|
jca |
|
| 55 |
|
gchen1 |
|
| 56 |
54 55
|
mpdan |
|
| 57 |
56
|
ensymd |
|