Description: The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ghmnsgima.1 | |
|
Assertion | ghmnsgima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmnsgima.1 | |
|
2 | simp1 | |
|
3 | nsgsubg | |
|
4 | 3 | 3ad2ant2 | |
5 | ghmima | |
|
6 | 2 4 5 | syl2anc | |
7 | 2 | adantr | |
8 | ghmgrp1 | |
|
9 | 7 8 | syl | |
10 | simprl | |
|
11 | eqid | |
|
12 | 11 | subgss | |
13 | 4 12 | syl | |
14 | 13 | adantr | |
15 | simprr | |
|
16 | 14 15 | sseldd | |
17 | eqid | |
|
18 | 11 17 | grpcl | |
19 | 9 10 16 18 | syl3anc | |
20 | eqid | |
|
21 | eqid | |
|
22 | 11 20 21 | ghmsub | |
23 | 7 19 10 22 | syl3anc | |
24 | eqid | |
|
25 | 11 17 24 | ghmlin | |
26 | 7 10 16 25 | syl3anc | |
27 | 26 | oveq1d | |
28 | 23 27 | eqtrd | |
29 | 11 1 | ghmf | |
30 | 2 29 | syl | |
31 | 30 | adantr | |
32 | 31 | ffnd | |
33 | simpl2 | |
|
34 | 11 17 20 | nsgconj | |
35 | 33 10 15 34 | syl3anc | |
36 | fnfvima | |
|
37 | 32 14 35 36 | syl3anc | |
38 | 28 37 | eqeltrrd | |
39 | 38 | ralrimivva | |
40 | 30 | ffnd | |
41 | oveq1 | |
|
42 | id | |
|
43 | 41 42 | oveq12d | |
44 | 43 | eleq1d | |
45 | 44 | ralbidv | |
46 | 45 | ralrn | |
47 | 40 46 | syl | |
48 | simp3 | |
|
49 | 48 | raleqdv | |
50 | oveq2 | |
|
51 | 50 | oveq1d | |
52 | 51 | eleq1d | |
53 | 52 | ralima | |
54 | 40 13 53 | syl2anc | |
55 | 54 | ralbidv | |
56 | 47 49 55 | 3bitr3d | |
57 | 39 56 | mpbird | |
58 | 1 24 21 | isnsg3 | |
59 | 6 57 58 | sylanbrc | |