Metamath Proof Explorer


Theorem ghmnsgima

Description: The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis ghmnsgima.1 Y=BaseT
Assertion ghmnsgima FSGrpHomTUNrmSGrpSranF=YFUNrmSGrpT

Proof

Step Hyp Ref Expression
1 ghmnsgima.1 Y=BaseT
2 simp1 FSGrpHomTUNrmSGrpSranF=YFSGrpHomT
3 nsgsubg UNrmSGrpSUSubGrpS
4 3 3ad2ant2 FSGrpHomTUNrmSGrpSranF=YUSubGrpS
5 ghmima FSGrpHomTUSubGrpSFUSubGrpT
6 2 4 5 syl2anc FSGrpHomTUNrmSGrpSranF=YFUSubGrpT
7 2 adantr FSGrpHomTUNrmSGrpSranF=YzBaseSxUFSGrpHomT
8 ghmgrp1 FSGrpHomTSGrp
9 7 8 syl FSGrpHomTUNrmSGrpSranF=YzBaseSxUSGrp
10 simprl FSGrpHomTUNrmSGrpSranF=YzBaseSxUzBaseS
11 eqid BaseS=BaseS
12 11 subgss USubGrpSUBaseS
13 4 12 syl FSGrpHomTUNrmSGrpSranF=YUBaseS
14 13 adantr FSGrpHomTUNrmSGrpSranF=YzBaseSxUUBaseS
15 simprr FSGrpHomTUNrmSGrpSranF=YzBaseSxUxU
16 14 15 sseldd FSGrpHomTUNrmSGrpSranF=YzBaseSxUxBaseS
17 eqid +S=+S
18 11 17 grpcl SGrpzBaseSxBaseSz+SxBaseS
19 9 10 16 18 syl3anc FSGrpHomTUNrmSGrpSranF=YzBaseSxUz+SxBaseS
20 eqid -S=-S
21 eqid -T=-T
22 11 20 21 ghmsub FSGrpHomTz+SxBaseSzBaseSFz+Sx-Sz=Fz+Sx-TFz
23 7 19 10 22 syl3anc FSGrpHomTUNrmSGrpSranF=YzBaseSxUFz+Sx-Sz=Fz+Sx-TFz
24 eqid +T=+T
25 11 17 24 ghmlin FSGrpHomTzBaseSxBaseSFz+Sx=Fz+TFx
26 7 10 16 25 syl3anc FSGrpHomTUNrmSGrpSranF=YzBaseSxUFz+Sx=Fz+TFx
27 26 oveq1d FSGrpHomTUNrmSGrpSranF=YzBaseSxUFz+Sx-TFz=Fz+TFx-TFz
28 23 27 eqtrd FSGrpHomTUNrmSGrpSranF=YzBaseSxUFz+Sx-Sz=Fz+TFx-TFz
29 11 1 ghmf FSGrpHomTF:BaseSY
30 2 29 syl FSGrpHomTUNrmSGrpSranF=YF:BaseSY
31 30 adantr FSGrpHomTUNrmSGrpSranF=YzBaseSxUF:BaseSY
32 31 ffnd FSGrpHomTUNrmSGrpSranF=YzBaseSxUFFnBaseS
33 simpl2 FSGrpHomTUNrmSGrpSranF=YzBaseSxUUNrmSGrpS
34 11 17 20 nsgconj UNrmSGrpSzBaseSxUz+Sx-SzU
35 33 10 15 34 syl3anc FSGrpHomTUNrmSGrpSranF=YzBaseSxUz+Sx-SzU
36 fnfvima FFnBaseSUBaseSz+Sx-SzUFz+Sx-SzFU
37 32 14 35 36 syl3anc FSGrpHomTUNrmSGrpSranF=YzBaseSxUFz+Sx-SzFU
38 28 37 eqeltrrd FSGrpHomTUNrmSGrpSranF=YzBaseSxUFz+TFx-TFzFU
39 38 ralrimivva FSGrpHomTUNrmSGrpSranF=YzBaseSxUFz+TFx-TFzFU
40 30 ffnd FSGrpHomTUNrmSGrpSranF=YFFnBaseS
41 oveq1 x=Fzx+Ty=Fz+Ty
42 id x=Fzx=Fz
43 41 42 oveq12d x=Fzx+Ty-Tx=Fz+Ty-TFz
44 43 eleq1d x=Fzx+Ty-TxFUFz+Ty-TFzFU
45 44 ralbidv x=FzyFUx+Ty-TxFUyFUFz+Ty-TFzFU
46 45 ralrn FFnBaseSxranFyFUx+Ty-TxFUzBaseSyFUFz+Ty-TFzFU
47 40 46 syl FSGrpHomTUNrmSGrpSranF=YxranFyFUx+Ty-TxFUzBaseSyFUFz+Ty-TFzFU
48 simp3 FSGrpHomTUNrmSGrpSranF=YranF=Y
49 48 raleqdv FSGrpHomTUNrmSGrpSranF=YxranFyFUx+Ty-TxFUxYyFUx+Ty-TxFU
50 oveq2 y=FxFz+Ty=Fz+TFx
51 50 oveq1d y=FxFz+Ty-TFz=Fz+TFx-TFz
52 51 eleq1d y=FxFz+Ty-TFzFUFz+TFx-TFzFU
53 52 ralima FFnBaseSUBaseSyFUFz+Ty-TFzFUxUFz+TFx-TFzFU
54 40 13 53 syl2anc FSGrpHomTUNrmSGrpSranF=YyFUFz+Ty-TFzFUxUFz+TFx-TFzFU
55 54 ralbidv FSGrpHomTUNrmSGrpSranF=YzBaseSyFUFz+Ty-TFzFUzBaseSxUFz+TFx-TFzFU
56 47 49 55 3bitr3d FSGrpHomTUNrmSGrpSranF=YxYyFUx+Ty-TxFUzBaseSxUFz+TFx-TFzFU
57 39 56 mpbird FSGrpHomTUNrmSGrpSranF=YxYyFUx+Ty-TxFU
58 1 24 21 isnsg3 FUNrmSGrpTFUSubGrpTxYyFUx+Ty-TxFU
59 6 57 58 sylanbrc FSGrpHomTUNrmSGrpSranF=YFUNrmSGrpT