| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvimass |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
2 3
|
ghmf |
|
| 5 |
4
|
adantr |
|
| 6 |
1 5
|
fssdm |
|
| 7 |
|
ghmgrp1 |
|
| 8 |
7
|
adantr |
|
| 9 |
|
eqid |
|
| 10 |
2 9
|
grpidcl |
|
| 11 |
8 10
|
syl |
|
| 12 |
|
eqid |
|
| 13 |
9 12
|
ghmid |
|
| 14 |
13
|
adantr |
|
| 15 |
12
|
subg0cl |
|
| 16 |
15
|
adantl |
|
| 17 |
14 16
|
eqeltrd |
|
| 18 |
5
|
ffnd |
|
| 19 |
|
elpreima |
|
| 20 |
18 19
|
syl |
|
| 21 |
11 17 20
|
mpbir2and |
|
| 22 |
21
|
ne0d |
|
| 23 |
|
elpreima |
|
| 24 |
18 23
|
syl |
|
| 25 |
|
elpreima |
|
| 26 |
18 25
|
syl |
|
| 27 |
26
|
adantr |
|
| 28 |
7
|
ad2antrr |
|
| 29 |
|
simprll |
|
| 30 |
|
simprrl |
|
| 31 |
|
eqid |
|
| 32 |
2 31
|
grpcl |
|
| 33 |
28 29 30 32
|
syl3anc |
|
| 34 |
|
simpll |
|
| 35 |
|
eqid |
|
| 36 |
2 31 35
|
ghmlin |
|
| 37 |
34 29 30 36
|
syl3anc |
|
| 38 |
|
simplr |
|
| 39 |
|
simprlr |
|
| 40 |
|
simprrr |
|
| 41 |
35
|
subgcl |
|
| 42 |
38 39 40 41
|
syl3anc |
|
| 43 |
37 42
|
eqeltrd |
|
| 44 |
|
elpreima |
|
| 45 |
18 44
|
syl |
|
| 46 |
45
|
adantr |
|
| 47 |
33 43 46
|
mpbir2and |
|
| 48 |
47
|
expr |
|
| 49 |
27 48
|
sylbid |
|
| 50 |
49
|
ralrimiv |
|
| 51 |
|
simprl |
|
| 52 |
|
eqid |
|
| 53 |
2 52
|
grpinvcl |
|
| 54 |
8 51 53
|
syl2an2r |
|
| 55 |
|
eqid |
|
| 56 |
2 52 55
|
ghminv |
|
| 57 |
56
|
ad2ant2r |
|
| 58 |
55
|
subginvcl |
|
| 59 |
58
|
ad2ant2l |
|
| 60 |
57 59
|
eqeltrd |
|
| 61 |
|
elpreima |
|
| 62 |
18 61
|
syl |
|
| 63 |
62
|
adantr |
|
| 64 |
54 60 63
|
mpbir2and |
|
| 65 |
50 64
|
jca |
|
| 66 |
65
|
ex |
|
| 67 |
24 66
|
sylbid |
|
| 68 |
67
|
ralrimiv |
|
| 69 |
2 31 52
|
issubg2 |
|
| 70 |
8 69
|
syl |
|
| 71 |
6 22 68 70
|
mpbir3and |
|