| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brgic |
|
| 2 |
|
n0 |
|
| 3 |
|
gimghm |
|
| 4 |
|
ghmgrp1 |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
ghmgrp2 |
|
| 7 |
3 6
|
syl |
|
| 8 |
5 7
|
2thd |
|
| 9 |
5
|
grpmndd |
|
| 10 |
7
|
grpmndd |
|
| 11 |
9 10
|
2thd |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
gimf1o |
|
| 15 |
|
f1of1 |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
adantr |
|
| 18 |
5
|
adantr |
|
| 19 |
|
simprl |
|
| 20 |
|
simprr |
|
| 21 |
|
eqid |
|
| 22 |
12 21
|
grpcl |
|
| 23 |
18 19 20 22
|
syl3anc |
|
| 24 |
12 21
|
grpcl |
|
| 25 |
18 20 19 24
|
syl3anc |
|
| 26 |
|
f1fveq |
|
| 27 |
17 23 25 26
|
syl12anc |
|
| 28 |
3
|
adantr |
|
| 29 |
|
eqid |
|
| 30 |
12 21 29
|
ghmlin |
|
| 31 |
28 19 20 30
|
syl3anc |
|
| 32 |
12 21 29
|
ghmlin |
|
| 33 |
28 20 19 32
|
syl3anc |
|
| 34 |
31 33
|
eqeq12d |
|
| 35 |
27 34
|
bitr3d |
|
| 36 |
35
|
2ralbidva |
|
| 37 |
|
f1ofo |
|
| 38 |
|
foima |
|
| 39 |
37 38
|
syl |
|
| 40 |
14 39
|
syl |
|
| 41 |
40
|
raleqdv |
|
| 42 |
|
f1ofn |
|
| 43 |
14 42
|
syl |
|
| 44 |
|
ssid |
|
| 45 |
|
oveq2 |
|
| 46 |
|
oveq1 |
|
| 47 |
45 46
|
eqeq12d |
|
| 48 |
47
|
ralima |
|
| 49 |
43 44 48
|
sylancl |
|
| 50 |
41 49
|
bitr3d |
|
| 51 |
50
|
ralbidv |
|
| 52 |
36 51
|
bitr4d |
|
| 53 |
40
|
raleqdv |
|
| 54 |
|
oveq1 |
|
| 55 |
|
oveq2 |
|
| 56 |
54 55
|
eqeq12d |
|
| 57 |
56
|
ralbidv |
|
| 58 |
57
|
ralima |
|
| 59 |
43 44 58
|
sylancl |
|
| 60 |
53 59
|
bitr3d |
|
| 61 |
52 60
|
bitr4d |
|
| 62 |
11 61
|
anbi12d |
|
| 63 |
12 21
|
iscmn |
|
| 64 |
13 29
|
iscmn |
|
| 65 |
62 63 64
|
3bitr4g |
|
| 66 |
8 65
|
anbi12d |
|
| 67 |
|
isabl |
|
| 68 |
|
isabl |
|
| 69 |
66 67 68
|
3bitr4g |
|
| 70 |
69
|
exlimiv |
|
| 71 |
2 70
|
sylbi |
|
| 72 |
1 71
|
sylbi |
|