Metamath Proof Explorer


Theorem grothomex

Description: The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex ). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion grothomex ωV

Proof

Step Hyp Ref Expression
1 r111 R1:On1-1V
2 omsson ωOn
3 f1ores R1:On1-1VωOnR1ω:ω1-1 ontoR1ω
4 1 2 3 mp2an R1ω:ω1-1 ontoR1ω
5 f1of1 R1ω:ω1-1 ontoR1ωR1ω:ω1-1R1ω
6 4 5 ax-mp R1ω:ω1-1R1ω
7 r1fnon R1FnOn
8 fvelimab R1FnOnωOnwR1ωxωR1x=w
9 7 2 8 mp2an wR1ωxωR1x=w
10 fveq2 x=R1x=R1
11 10 eleq1d x=R1xyR1y
12 fveq2 x=wR1x=R1w
13 12 eleq1d x=wR1xyR1wy
14 fveq2 x=sucwR1x=R1sucw
15 14 eleq1d x=sucwR1xyR1sucwy
16 r10 R1=
17 16 eleq1i R1yy
18 17 biimpri yR1y
19 18 adantr yzy𝒫zyR1y
20 pweq z=R1w𝒫z=𝒫R1w
21 20 eleq1d z=R1w𝒫zy𝒫R1wy
22 21 rspccv zy𝒫zyR1wy𝒫R1wy
23 nnon wωwOn
24 r1suc wOnR1sucw=𝒫R1w
25 23 24 syl wωR1sucw=𝒫R1w
26 25 eleq1d wωR1sucwy𝒫R1wy
27 26 biimprcd 𝒫R1wywωR1sucwy
28 22 27 syl6 zy𝒫zyR1wywωR1sucwy
29 28 com3r wωzy𝒫zyR1wyR1sucwy
30 29 adantld wωyzy𝒫zyR1wyR1sucwy
31 11 13 15 19 30 finds2 xωyzy𝒫zyR1xy
32 eleq1 R1x=wR1xywy
33 32 biimpd R1x=wR1xywy
34 31 33 syl9 xωR1x=wyzy𝒫zywy
35 34 rexlimiv xωR1x=wyzy𝒫zywy
36 9 35 sylbi wR1ωyzy𝒫zywy
37 36 com12 yzy𝒫zywR1ωwy
38 37 ssrdv yzy𝒫zyR1ωy
39 vex yV
40 39 ssex R1ωyR1ωV
41 38 40 syl yzy𝒫zyR1ωV
42 0ex V
43 eleq1 x=xyy
44 43 anbi1d x=xyzy𝒫zyyzy𝒫zy
45 44 exbidv x=yxyzy𝒫zyyyzy𝒫zy
46 axgroth6 yxyzy𝒫zy𝒫zyz𝒫yzyzy
47 simpr 𝒫zy𝒫zy𝒫zy
48 47 ralimi zy𝒫zy𝒫zyzy𝒫zy
49 48 anim2i xyzy𝒫zy𝒫zyxyzy𝒫zy
50 49 3adant3 xyzy𝒫zy𝒫zyz𝒫yzyzyxyzy𝒫zy
51 46 50 eximii yxyzy𝒫zy
52 42 45 51 vtocl yyzy𝒫zy
53 41 52 exlimiiv R1ωV
54 f1dmex R1ω:ω1-1R1ωR1ωVωV
55 6 53 54 mp2an ωV