Description: The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex ). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | grothomex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r111 | |
|
2 | omsson | |
|
3 | f1ores | |
|
4 | 1 2 3 | mp2an | |
5 | f1of1 | |
|
6 | 4 5 | ax-mp | |
7 | r1fnon | |
|
8 | fvelimab | |
|
9 | 7 2 8 | mp2an | |
10 | fveq2 | |
|
11 | 10 | eleq1d | |
12 | fveq2 | |
|
13 | 12 | eleq1d | |
14 | fveq2 | |
|
15 | 14 | eleq1d | |
16 | r10 | |
|
17 | 16 | eleq1i | |
18 | 17 | biimpri | |
19 | 18 | adantr | |
20 | pweq | |
|
21 | 20 | eleq1d | |
22 | 21 | rspccv | |
23 | nnon | |
|
24 | r1suc | |
|
25 | 23 24 | syl | |
26 | 25 | eleq1d | |
27 | 26 | biimprcd | |
28 | 22 27 | syl6 | |
29 | 28 | com3r | |
30 | 29 | adantld | |
31 | 11 13 15 19 30 | finds2 | |
32 | eleq1 | |
|
33 | 32 | biimpd | |
34 | 31 33 | syl9 | |
35 | 34 | rexlimiv | |
36 | 9 35 | sylbi | |
37 | 36 | com12 | |
38 | 37 | ssrdv | |
39 | vex | |
|
40 | 39 | ssex | |
41 | 38 40 | syl | |
42 | 0ex | |
|
43 | eleq1 | |
|
44 | 43 | anbi1d | |
45 | 44 | exbidv | |
46 | axgroth6 | |
|
47 | simpr | |
|
48 | 47 | ralimi | |
49 | 48 | anim2i | |
50 | 49 | 3adant3 | |
51 | 46 50 | eximii | |
52 | 42 45 51 | vtocl | |
53 | 41 52 | exlimiiv | |
54 | f1dmex | |
|
55 | 6 53 54 | mp2an | |