Description: Closure of a group sum in a linear subspace: A (finitely supported) sum of scalar multiplications of vectors of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019) (Revised by AV, 28-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumlsscl.s | |
|
gsumlsscl.r | |
||
gsumlsscl.b | |
||
Assertion | gsumlsscl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumlsscl.s | |
|
2 | gsumlsscl.r | |
|
3 | gsumlsscl.b | |
|
4 | eqid | |
|
5 | lmodabl | |
|
6 | 5 | 3ad2ant1 | |
7 | 6 | adantr | |
8 | ssexg | |
|
9 | 8 | ancoms | |
10 | 9 | 3adant1 | |
11 | 10 | adantr | |
12 | 3simpa | |
|
13 | 1 | lsssubg | |
14 | 12 13 | syl | |
15 | 14 | adantr | |
16 | 12 | adantr | |
17 | 16 | adantr | |
18 | elmapi | |
|
19 | ffvelcdm | |
|
20 | 19 | ex | |
21 | 18 20 | syl | |
22 | 21 | ad2antrl | |
23 | 22 | imp | |
24 | ssel | |
|
25 | 24 | 3ad2ant3 | |
26 | 25 | adantr | |
27 | 26 | imp | |
28 | eqid | |
|
29 | 2 28 3 1 | lssvscl | |
30 | 17 23 27 29 | syl12anc | |
31 | 30 | fmpttd | |
32 | simp1 | |
|
33 | eqid | |
|
34 | 33 1 | lssss | |
35 | sstr | |
|
36 | 35 | expcom | |
37 | 34 36 | syl | |
38 | 37 | a1i | |
39 | 38 | 3imp | |
40 | elpwg | |
|
41 | 10 40 | syl | |
42 | 39 41 | mpbird | |
43 | 32 42 | jca | |
44 | 43 | adantr | |
45 | simprl | |
|
46 | simprr | |
|
47 | 2 3 | scmfsupp | |
48 | 44 45 46 47 | syl3anc | |
49 | 4 7 11 15 31 48 | gsumsubgcl | |
50 | 49 | ex | |