| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummgp0.g |  | 
						
							| 2 |  | gsummgp0.0 |  | 
						
							| 3 |  | gsummgp0.r |  | 
						
							| 4 |  | gsummgp0.n |  | 
						
							| 5 |  | gsummgp0.a |  | 
						
							| 6 |  | gsummgp0.e |  | 
						
							| 7 |  | gsummgp0.b |  | 
						
							| 8 |  | difsnid |  | 
						
							| 9 | 8 | eqcomd |  | 
						
							| 10 | 9 | ad2antrl |  | 
						
							| 11 | 10 | mpteq1d |  | 
						
							| 12 | 11 | oveq2d |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 1 13 | mgpbas |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 1 15 | mgpplusg |  | 
						
							| 17 | 1 | crngmgp |  | 
						
							| 18 | 3 17 | syl |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 |  | diffi |  | 
						
							| 21 | 4 20 | syl |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | simpl |  | 
						
							| 24 |  | eldifi |  | 
						
							| 25 | 23 24 5 | syl2an |  | 
						
							| 26 |  | simprl |  | 
						
							| 27 |  | neldifsnd |  | 
						
							| 28 |  | crngring |  | 
						
							| 29 | 3 28 | syl |  | 
						
							| 30 |  | ringmnd |  | 
						
							| 31 | 13 2 | mndidcl |  | 
						
							| 32 | 29 30 31 | 3syl |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | eleq1 |  | 
						
							| 35 | 34 | ad2antll |  | 
						
							| 36 | 33 35 | mpbird |  | 
						
							| 37 | 6 | adantlr |  | 
						
							| 38 | 14 16 19 22 25 26 27 36 37 | gsumunsnd |  | 
						
							| 39 |  | oveq2 |  | 
						
							| 40 | 39 | ad2antll |  | 
						
							| 41 | 24 5 | sylan2 |  | 
						
							| 42 | 41 | ralrimiva |  | 
						
							| 43 | 14 18 21 42 | gsummptcl |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 13 15 2 | ringrz |  | 
						
							| 46 | 29 44 45 | syl2an2r |  | 
						
							| 47 | 40 46 | eqtrd |  | 
						
							| 48 | 12 38 47 | 3eqtrd |  | 
						
							| 49 | 7 48 | rexlimddv |  |