Description: A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015) (Proof shortened by Mario Carneiro, 28-Feb-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumwrev.b | |
|
gsumwrev.o | |
||
Assertion | gsumwrev | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumwrev.b | |
|
2 | gsumwrev.o | |
|
3 | oveq2 | |
|
4 | fveq2 | |
|
5 | rev0 | |
|
6 | 4 5 | eqtrdi | |
7 | 6 | oveq2d | |
8 | 3 7 | eqeq12d | |
9 | 8 | imbi2d | |
10 | oveq2 | |
|
11 | fveq2 | |
|
12 | 11 | oveq2d | |
13 | 10 12 | eqeq12d | |
14 | 13 | imbi2d | |
15 | oveq2 | |
|
16 | fveq2 | |
|
17 | 16 | oveq2d | |
18 | 15 17 | eqeq12d | |
19 | 18 | imbi2d | |
20 | oveq2 | |
|
21 | fveq2 | |
|
22 | 21 | oveq2d | |
23 | 20 22 | eqeq12d | |
24 | 23 | imbi2d | |
25 | eqid | |
|
26 | 2 25 | oppgid | |
27 | 26 | gsum0 | |
28 | 25 | gsum0 | |
29 | 27 28 | eqtr4i | |
30 | 29 | a1i | |
31 | oveq2 | |
|
32 | 2 | oppgmnd | |
33 | 32 | adantr | |
34 | simprl | |
|
35 | simprr | |
|
36 | 35 | s1cld | |
37 | 2 1 | oppgbas | |
38 | eqid | |
|
39 | 37 38 | gsumccat | |
40 | 33 34 36 39 | syl3anc | |
41 | 37 | gsumws1 | |
42 | 41 | ad2antll | |
43 | 42 | oveq2d | |
44 | eqid | |
|
45 | 44 2 38 | oppgplus | |
46 | 43 45 | eqtrdi | |
47 | 40 46 | eqtrd | |
48 | revccat | |
|
49 | 34 36 48 | syl2anc | |
50 | revs1 | |
|
51 | 50 | oveq1i | |
52 | 49 51 | eqtrdi | |
53 | 52 | oveq2d | |
54 | simpl | |
|
55 | revcl | |
|
56 | 55 | ad2antrl | |
57 | 1 44 | gsumccat | |
58 | 54 36 56 57 | syl3anc | |
59 | 1 | gsumws1 | |
60 | 59 | ad2antll | |
61 | 60 | oveq1d | |
62 | 53 58 61 | 3eqtrd | |
63 | 47 62 | eqeq12d | |
64 | 31 63 | imbitrrid | |
65 | 64 | expcom | |
66 | 65 | a2d | |
67 | 9 14 19 24 30 66 | wrdind | |
68 | 67 | impcom | |