Metamath Proof Explorer


Theorem h1datomi

Description: A 1-dimensional subspace is an atom. (Contributed by NM, 20-Jul-2001) (New usage is discouraged.)

Ref Expression
Hypotheses h1datom.1 AC
h1datom.2 B
Assertion h1datomi ABA=BA=0

Proof

Step Hyp Ref Expression
1 h1datom.1 AC
2 h1datom.2 B
3 1 chne0i A0xAx0
4 ssel ABxAxB
5 2 h1de2ci xByx=yB
6 oveq1 y=0yB=0B
7 ax-hvmul0 B0B=0
8 2 7 ax-mp 0B=0
9 6 8 eqtrdi y=0yB=0
10 eqeq1 x=yBx=0yB=0
11 9 10 imbitrrid x=yBy=0x=0
12 11 necon3d x=yBx0y0
13 12 adantl yx=yBx0y0
14 reccl yy01y
15 1 chshii AS
16 shmulcl AS1yxA1yxA
17 15 16 mp3an1 1yxA1yxA
18 17 ex 1yxA1yxA
19 14 18 syl yy0xA1yxA
20 19 adantr yy0x=yBxA1yxA
21 oveq2 x=yB1yx=1yyB
22 simpl yy0y
23 ax-hvmulass 1yyB1yyB=1yyB
24 2 23 mp3an3 1yy1yyB=1yyB
25 14 22 24 syl2anc yy01yyB=1yyB
26 recid2 yy01yy=1
27 26 oveq1d yy01yyB=1B
28 25 27 eqtr3d yy01yyB=1B
29 ax-hvmulid B1B=B
30 2 29 ax-mp 1B=B
31 28 30 eqtrdi yy01yyB=B
32 21 31 sylan9eqr yy0x=yB1yx=B
33 32 eleq1d yy0x=yB1yxABA
34 20 33 sylibd yy0x=yBxABA
35 34 exp31 yy0x=yBxABA
36 35 com23 yx=yBy0xABA
37 36 imp yx=yBy0xABA
38 13 37 syld yx=yBx0xABA
39 38 com3r xAyx=yBx0BA
40 39 expd xAyx=yBx0BA
41 40 rexlimdv xAyx=yBx0BA
42 5 41 biimtrid xAxBx0BA
43 4 42 sylcom ABxAx0BA
44 43 rexlimdv ABxAx0BA
45 3 44 biimtrid ABA0BA
46 snssi BABA
47 snssi BB
48 2 47 ax-mp B
49 1 chssii A
50 48 49 occon2i BABA
51 46 50 syl BABA
52 1 ococi A=A
53 51 52 sseqtrdi BABA
54 45 53 syl6 ABA0BA
55 54 anc2li ABA0ABBA
56 eqss A=BABBA
57 55 56 syl6ibr ABA0A=B
58 57 necon1d ABABA=0
59 neor A=BA=0ABA=0
60 58 59 sylibr ABA=BA=0