Description: A 1-dimensional subspace is an atom. (Contributed by NM, 20-Jul-2001) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | h1datom.1 | |
|
h1datom.2 | |
||
Assertion | h1datomi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h1datom.1 | |
|
2 | h1datom.2 | |
|
3 | 1 | chne0i | |
4 | ssel | |
|
5 | 2 | h1de2ci | |
6 | oveq1 | |
|
7 | ax-hvmul0 | |
|
8 | 2 7 | ax-mp | |
9 | 6 8 | eqtrdi | |
10 | eqeq1 | |
|
11 | 9 10 | imbitrrid | |
12 | 11 | necon3d | |
13 | 12 | adantl | |
14 | reccl | |
|
15 | 1 | chshii | |
16 | shmulcl | |
|
17 | 15 16 | mp3an1 | |
18 | 17 | ex | |
19 | 14 18 | syl | |
20 | 19 | adantr | |
21 | oveq2 | |
|
22 | simpl | |
|
23 | ax-hvmulass | |
|
24 | 2 23 | mp3an3 | |
25 | 14 22 24 | syl2anc | |
26 | recid2 | |
|
27 | 26 | oveq1d | |
28 | 25 27 | eqtr3d | |
29 | ax-hvmulid | |
|
30 | 2 29 | ax-mp | |
31 | 28 30 | eqtrdi | |
32 | 21 31 | sylan9eqr | |
33 | 32 | eleq1d | |
34 | 20 33 | sylibd | |
35 | 34 | exp31 | |
36 | 35 | com23 | |
37 | 36 | imp | |
38 | 13 37 | syld | |
39 | 38 | com3r | |
40 | 39 | expd | |
41 | 40 | rexlimdv | |
42 | 5 41 | biimtrid | |
43 | 4 42 | sylcom | |
44 | 43 | rexlimdv | |
45 | 3 44 | biimtrid | |
46 | snssi | |
|
47 | snssi | |
|
48 | 2 47 | ax-mp | |
49 | 1 | chssii | |
50 | 48 49 | occon2i | |
51 | 46 50 | syl | |
52 | 1 | ococi | |
53 | 51 52 | sseqtrdi | |
54 | 45 53 | syl6 | |
55 | 54 | anc2li | |
56 | eqss | |
|
57 | 55 56 | syl6ibr | |
58 | 57 | necon1d | |
59 | neor | |
|
60 | 58 59 | sylibr | |