Metamath Proof Explorer


Theorem h2hcau

Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 13-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses h2hc.1 U=+norm
h2hc.2 UNrmCVec
h2hc.3 =BaseSetU
h2hc.4 D=IndMetU
Assertion h2hcau Cauchy=CauD

Proof

Step Hyp Ref Expression
1 h2hc.1 U=+norm
2 h2hc.2 UNrmCVec
3 h2hc.3 =BaseSetU
4 h2hc.4 D=IndMetU
5 df-rab f|x+jkjnormfj-fk<x=f|fx+jkjnormfj-fk<x
6 df-hcau Cauchy=f|x+jkjnormfj-fk<x
7 elin fCauDfCauDf
8 ancom fCauDfffCauD
9 3 hlex V
10 nnex V
11 9 10 elmap ff:
12 nnuz =1
13 3 4 imsxmet UNrmCVecD∞Met
14 2 13 mp1i f:D∞Met
15 1zzd f:1
16 eqidd f:kfk=fk
17 eqidd f:jfj=fj
18 id f:f:
19 12 14 15 16 17 18 iscauf f:fCauDx+jkjfjDfk<x
20 ffvelcdm f:jfj
21 20 adantr f:jkjfj
22 eluznn jkjk
23 ffvelcdm f:kfk
24 22 23 sylan2 f:jkjfk
25 24 anassrs f:jkjfk
26 1 2 3 4 h2hmetdval fjfkfjDfk=normfj-fk
27 21 25 26 syl2anc f:jkjfjDfk=normfj-fk
28 27 breq1d f:jkjfjDfk<xnormfj-fk<x
29 28 ralbidva f:jkjfjDfk<xkjnormfj-fk<x
30 29 rexbidva f:jkjfjDfk<xjkjnormfj-fk<x
31 30 ralbidv f:x+jkjfjDfk<xx+jkjnormfj-fk<x
32 19 31 bitrd f:fCauDx+jkjnormfj-fk<x
33 11 32 sylbi ffCauDx+jkjnormfj-fk<x
34 33 pm5.32i ffCauDfx+jkjnormfj-fk<x
35 7 8 34 3bitri fCauDfx+jkjnormfj-fk<x
36 35 eqabi CauD=f|fx+jkjnormfj-fk<x
37 5 6 36 3eqtr4i Cauchy=CauD