Metamath Proof Explorer


Theorem heiborlem9

Description: Lemma for heibor . Discharge the hypotheses of heiborlem8 by applying caubl to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014)

Ref Expression
Hypotheses heibor.1 J=MetOpenD
heibor.3 K=u|¬v𝒫UFinuv
heibor.4 G=yn|n0yFnyBnK
heibor.5 B=zX,m0zballD12m
heibor.6 φDCMetX
heibor.7 φF:0𝒫XFin
heibor.8 φn0X=yFnyBn
heibor.9 φxGTxG2ndx+1BxTxB2ndx+1K
heibor.10 φCG0
heibor.11 S=seq0Tm0ifm=0Cm1
heibor.12 M=nSn32n
heibor.13 φUJ
heiborlem9.14 φU=X
Assertion heiborlem9 φψ

Proof

Step Hyp Ref Expression
1 heibor.1 J=MetOpenD
2 heibor.3 K=u|¬v𝒫UFinuv
3 heibor.4 G=yn|n0yFnyBnK
4 heibor.5 B=zX,m0zballD12m
5 heibor.6 φDCMetX
6 heibor.7 φF:0𝒫XFin
7 heibor.8 φn0X=yFnyBn
8 heibor.9 φxGTxG2ndx+1BxTxB2ndx+1K
9 heibor.10 φCG0
10 heibor.11 S=seq0Tm0ifm=0Cm1
11 heibor.12 M=nSn32n
12 heibor.13 φUJ
13 heiborlem9.14 φU=X
14 cmetmet DCMetXDMetX
15 metxmet DMetXD∞MetX
16 5 14 15 3syl φD∞MetX
17 1 mopntopon D∞MetXJTopOnX
18 16 17 syl φJTopOnX
19 1 2 3 4 5 6 7 8 9 10 11 heiborlem5 φM:X×+
20 1 2 3 4 5 6 7 8 9 10 11 heiborlem6 φkballDMk+1ballDMk
21 1 2 3 4 5 6 7 8 9 10 11 heiborlem7 r+k2ndMk<r
22 21 a1i φr+k2ndMk<r
23 16 19 20 22 caubl φ1stMCauD
24 1 cmetcau DCMetX1stMCauD1stMdomtJ
25 5 23 24 syl2anc φ1stMdomtJ
26 1 methaus D∞MetXJHaus
27 16 26 syl φJHaus
28 lmfun JHausFuntJ
29 funfvbrb FuntJ1stMdomtJ1stMtJtJ1stM
30 27 28 29 3syl φ1stMdomtJ1stMtJtJ1stM
31 25 30 mpbid φ1stMtJtJ1stM
32 lmcl JTopOnX1stMtJtJ1stMtJ1stMX
33 18 31 32 syl2anc φtJ1stMX
34 33 13 eleqtrrd φtJ1stMU
35 eluni2 tJ1stMUtUtJ1stMt
36 34 35 sylib φtUtJ1stMt
37 5 adantr φtUtJ1stMtDCMetX
38 6 adantr φtUtJ1stMtF:0𝒫XFin
39 7 adantr φtUtJ1stMtn0X=yFnyBn
40 8 adantr φtUtJ1stMtxGTxG2ndx+1BxTxB2ndx+1K
41 9 adantr φtUtJ1stMtCG0
42 12 adantr φtUtJ1stMtUJ
43 fvex tJ1stMV
44 simprr φtUtJ1stMttJ1stMt
45 simprl φtUtJ1stMttU
46 31 adantr φtUtJ1stMt1stMtJtJ1stM
47 1 2 3 4 37 38 39 40 41 10 11 42 43 44 45 46 heiborlem8 φtUtJ1stMtψ
48 36 47 rexlimddv φψ