| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|
| 2 |
|
heibor.3 |
|
| 3 |
|
heibor.4 |
|
| 4 |
|
heibor.5 |
|
| 5 |
|
heibor.6 |
|
| 6 |
|
heibor.7 |
|
| 7 |
|
heibor.8 |
|
| 8 |
|
heibor.9 |
|
| 9 |
|
heibor.10 |
|
| 10 |
|
heibor.11 |
|
| 11 |
|
heibor.12 |
|
| 12 |
|
heibor.13 |
|
| 13 |
|
heiborlem9.14 |
|
| 14 |
|
cmetmet |
|
| 15 |
|
metxmet |
|
| 16 |
5 14 15
|
3syl |
|
| 17 |
1
|
mopntopon |
|
| 18 |
16 17
|
syl |
|
| 19 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem5 |
|
| 20 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem6 |
|
| 21 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem7 |
|
| 22 |
21
|
a1i |
|
| 23 |
16 19 20 22
|
caubl |
|
| 24 |
1
|
cmetcau |
|
| 25 |
5 23 24
|
syl2anc |
|
| 26 |
1
|
methaus |
|
| 27 |
16 26
|
syl |
|
| 28 |
|
lmfun |
|
| 29 |
|
funfvbrb |
|
| 30 |
27 28 29
|
3syl |
|
| 31 |
25 30
|
mpbid |
|
| 32 |
|
lmcl |
|
| 33 |
18 31 32
|
syl2anc |
|
| 34 |
33 13
|
eleqtrrd |
|
| 35 |
|
eluni2 |
|
| 36 |
34 35
|
sylib |
|
| 37 |
5
|
adantr |
|
| 38 |
6
|
adantr |
|
| 39 |
7
|
adantr |
|
| 40 |
8
|
adantr |
|
| 41 |
9
|
adantr |
|
| 42 |
12
|
adantr |
|
| 43 |
|
fvex |
|
| 44 |
|
simprr |
|
| 45 |
|
simprl |
|
| 46 |
31
|
adantr |
|
| 47 |
1 2 3 4 37 38 39 40 41 10 11 42 43 44 45 46
|
heiborlem8 |
|
| 48 |
36 47
|
rexlimddv |
|