Description: Lemma for heibor . Discharge the hypotheses of heiborlem8 by applying caubl to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | heibor.1 | |
|
heibor.3 | |
||
heibor.4 | |
||
heibor.5 | |
||
heibor.6 | |
||
heibor.7 | |
||
heibor.8 | |
||
heibor.9 | |
||
heibor.10 | |
||
heibor.11 | |
||
heibor.12 | |
||
heibor.13 | |
||
heiborlem9.14 | |
||
Assertion | heiborlem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | heibor.1 | |
|
2 | heibor.3 | |
|
3 | heibor.4 | |
|
4 | heibor.5 | |
|
5 | heibor.6 | |
|
6 | heibor.7 | |
|
7 | heibor.8 | |
|
8 | heibor.9 | |
|
9 | heibor.10 | |
|
10 | heibor.11 | |
|
11 | heibor.12 | |
|
12 | heibor.13 | |
|
13 | heiborlem9.14 | |
|
14 | cmetmet | |
|
15 | metxmet | |
|
16 | 5 14 15 | 3syl | |
17 | 1 | mopntopon | |
18 | 16 17 | syl | |
19 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem5 | |
20 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem6 | |
21 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem7 | |
22 | 21 | a1i | |
23 | 16 19 20 22 | caubl | |
24 | 1 | cmetcau | |
25 | 5 23 24 | syl2anc | |
26 | 1 | methaus | |
27 | 16 26 | syl | |
28 | lmfun | |
|
29 | funfvbrb | |
|
30 | 27 28 29 | 3syl | |
31 | 25 30 | mpbid | |
32 | lmcl | |
|
33 | 18 31 32 | syl2anc | |
34 | 33 13 | eleqtrrd | |
35 | eluni2 | |
|
36 | 34 35 | sylib | |
37 | 5 | adantr | |
38 | 6 | adantr | |
39 | 7 | adantr | |
40 | 8 | adantr | |
41 | 9 | adantr | |
42 | 12 | adantr | |
43 | fvex | |
|
44 | simprr | |
|
45 | simprl | |
|
46 | 31 | adantr | |
47 | 1 2 3 4 37 38 39 40 41 10 11 42 43 44 45 46 | heiborlem8 | |
48 | 36 47 | rexlimddv | |