Metamath Proof Explorer


Theorem heiborlem9

Description: Lemma for heibor . Discharge the hypotheses of heiborlem8 by applying caubl to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014)

Ref Expression
Hypotheses heibor.1 J = MetOpen D
heibor.3 K = u | ¬ v 𝒫 U Fin u v
heibor.4 G = y n | n 0 y F n y B n K
heibor.5 B = z X , m 0 z ball D 1 2 m
heibor.6 φ D CMet X
heibor.7 φ F : 0 𝒫 X Fin
heibor.8 φ n 0 X = y F n y B n
heibor.9 φ x G T x G 2 nd x + 1 B x T x B 2 nd x + 1 K
heibor.10 φ C G 0
heibor.11 S = seq 0 T m 0 if m = 0 C m 1
heibor.12 M = n S n 3 2 n
heibor.13 φ U J
heiborlem9.14 φ U = X
Assertion heiborlem9 φ ψ

Proof

Step Hyp Ref Expression
1 heibor.1 J = MetOpen D
2 heibor.3 K = u | ¬ v 𝒫 U Fin u v
3 heibor.4 G = y n | n 0 y F n y B n K
4 heibor.5 B = z X , m 0 z ball D 1 2 m
5 heibor.6 φ D CMet X
6 heibor.7 φ F : 0 𝒫 X Fin
7 heibor.8 φ n 0 X = y F n y B n
8 heibor.9 φ x G T x G 2 nd x + 1 B x T x B 2 nd x + 1 K
9 heibor.10 φ C G 0
10 heibor.11 S = seq 0 T m 0 if m = 0 C m 1
11 heibor.12 M = n S n 3 2 n
12 heibor.13 φ U J
13 heiborlem9.14 φ U = X
14 cmetmet D CMet X D Met X
15 metxmet D Met X D ∞Met X
16 5 14 15 3syl φ D ∞Met X
17 1 mopntopon D ∞Met X J TopOn X
18 16 17 syl φ J TopOn X
19 1 2 3 4 5 6 7 8 9 10 11 heiborlem5 φ M : X × +
20 1 2 3 4 5 6 7 8 9 10 11 heiborlem6 φ k ball D M k + 1 ball D M k
21 1 2 3 4 5 6 7 8 9 10 11 heiborlem7 r + k 2 nd M k < r
22 21 a1i φ r + k 2 nd M k < r
23 16 19 20 22 caubl φ 1 st M Cau D
24 1 cmetcau D CMet X 1 st M Cau D 1 st M dom t J
25 5 23 24 syl2anc φ 1 st M dom t J
26 1 methaus D ∞Met X J Haus
27 16 26 syl φ J Haus
28 lmfun J Haus Fun t J
29 funfvbrb Fun t J 1 st M dom t J 1 st M t J t J 1 st M
30 27 28 29 3syl φ 1 st M dom t J 1 st M t J t J 1 st M
31 25 30 mpbid φ 1 st M t J t J 1 st M
32 lmcl J TopOn X 1 st M t J t J 1 st M t J 1 st M X
33 18 31 32 syl2anc φ t J 1 st M X
34 33 13 eleqtrrd φ t J 1 st M U
35 eluni2 t J 1 st M U t U t J 1 st M t
36 34 35 sylib φ t U t J 1 st M t
37 5 adantr φ t U t J 1 st M t D CMet X
38 6 adantr φ t U t J 1 st M t F : 0 𝒫 X Fin
39 7 adantr φ t U t J 1 st M t n 0 X = y F n y B n
40 8 adantr φ t U t J 1 st M t x G T x G 2 nd x + 1 B x T x B 2 nd x + 1 K
41 9 adantr φ t U t J 1 st M t C G 0
42 12 adantr φ t U t J 1 st M t U J
43 fvex t J 1 st M V
44 simprr φ t U t J 1 st M t t J 1 st M t
45 simprl φ t U t J 1 st M t t U
46 31 adantr φ t U t J 1 st M t 1 st M t J t J 1 st M
47 1 2 3 4 37 38 39 40 41 10 11 42 43 44 45 46 heiborlem8 φ t U t J 1 st M t ψ
48 36 47 rexlimddv φ ψ