| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilset.h |  | 
						
							| 2 |  | hlhilset.l |  | 
						
							| 3 |  | hlhilset.u |  | 
						
							| 4 |  | hlhilset.v |  | 
						
							| 5 |  | hlhilset.p |  | 
						
							| 6 |  | hlhilset.e |  | 
						
							| 7 |  | hlhilset.g |  | 
						
							| 8 |  | hlhilset.r |  | 
						
							| 9 |  | hlhilset.t |  | 
						
							| 10 |  | hlhilset.s |  | 
						
							| 11 |  | hlhilset.i |  | 
						
							| 12 |  | hlhilset.k |  | 
						
							| 13 |  | elex |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 12 14 | syl |  | 
						
							| 16 | 1 | fvexi |  | 
						
							| 17 | 16 | mptex |  | 
						
							| 18 |  | nfcv |  | 
						
							| 19 |  | nfcv |  | 
						
							| 20 |  | nfcsb1v |  | 
						
							| 21 | 19 20 | nfmpt |  | 
						
							| 22 |  | fveq2 |  | 
						
							| 23 | 22 1 | eqtr4di |  | 
						
							| 24 |  | csbeq1a |  | 
						
							| 25 | 23 24 | mpteq12dv |  | 
						
							| 26 |  | df-hlhil |  | 
						
							| 27 | 18 21 25 26 | fvmptf |  | 
						
							| 28 | 15 17 27 | sylancl |  | 
						
							| 29 | 15 | adantr |  | 
						
							| 30 |  | fvexd |  | 
						
							| 31 |  | fvexd |  | 
						
							| 32 |  | id |  | 
						
							| 33 |  | id |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 34 | fveq2d |  | 
						
							| 36 |  | simplr |  | 
						
							| 37 | 35 36 | fveq12d |  | 
						
							| 38 | 37 3 | eqtr4di |  | 
						
							| 39 | 33 38 | sylan9eqr |  | 
						
							| 40 | 39 | fveq2d |  | 
						
							| 41 | 40 4 | eqtr4di |  | 
						
							| 42 | 32 41 | sylan9eqr |  | 
						
							| 43 | 42 | opeq2d |  | 
						
							| 44 | 39 | adantr |  | 
						
							| 45 | 44 | fveq2d |  | 
						
							| 46 | 45 5 | eqtr4di |  | 
						
							| 47 | 46 | opeq2d |  | 
						
							| 48 | 34 | fveq2d |  | 
						
							| 49 | 48 36 | fveq12d |  | 
						
							| 50 | 49 6 | eqtr4di |  | 
						
							| 51 | 34 | fveq2d |  | 
						
							| 52 | 51 36 | fveq12d |  | 
						
							| 53 | 52 7 | eqtr4di |  | 
						
							| 54 | 53 | opeq2d |  | 
						
							| 55 | 50 54 | oveq12d |  | 
						
							| 56 | 55 8 | eqtr4di |  | 
						
							| 57 | 56 | opeq2d |  | 
						
							| 58 | 57 | ad2antrr |  | 
						
							| 59 | 43 47 58 | tpeq123d |  | 
						
							| 60 | 44 | fveq2d |  | 
						
							| 61 | 60 9 | eqtr4di |  | 
						
							| 62 | 61 | opeq2d |  | 
						
							| 63 | 34 | fveq2d |  | 
						
							| 64 | 63 36 | fveq12d |  | 
						
							| 65 | 64 10 | eqtr4di |  | 
						
							| 66 | 65 | ad2antrr |  | 
						
							| 67 | 66 | fveq1d |  | 
						
							| 68 | 67 | fveq1d |  | 
						
							| 69 | 42 42 68 | mpoeq123dv |  | 
						
							| 70 | 69 11 | eqtr4di |  | 
						
							| 71 | 70 | opeq2d |  | 
						
							| 72 | 62 71 | preq12d |  | 
						
							| 73 | 59 72 | uneq12d |  | 
						
							| 74 | 31 73 | csbied |  | 
						
							| 75 | 30 74 | csbied |  | 
						
							| 76 | 29 75 | csbied |  | 
						
							| 77 | 12 | simprd |  | 
						
							| 78 |  | tpex |  | 
						
							| 79 |  | prex |  | 
						
							| 80 | 78 79 | unex |  | 
						
							| 81 | 80 | a1i |  | 
						
							| 82 | 28 76 77 81 | fvmptd |  | 
						
							| 83 | 2 82 | eqtrid |  |