Metamath Proof Explorer


Theorem hlhilset

Description: The final Hilbert space constructed from a Hilbert lattice K and an arbitrary hyperplane W in K . (Contributed by NM, 21-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilset.h H=LHypK
hlhilset.l L=HLHilKW
hlhilset.u U=DVecHKW
hlhilset.v V=BaseU
hlhilset.p +˙=+U
hlhilset.e E=EDRingKW
hlhilset.g G=HGMapKW
hlhilset.r R=EsSet*ndxG
hlhilset.t ·˙=U
hlhilset.s S=HDMapKW
hlhilset.i ,˙=xV,yVSyx
hlhilset.k φKHLWH
Assertion hlhilset φL=BasendxV+ndx+˙ScalarndxRndx·˙𝑖ndx,˙

Proof

Step Hyp Ref Expression
1 hlhilset.h H=LHypK
2 hlhilset.l L=HLHilKW
3 hlhilset.u U=DVecHKW
4 hlhilset.v V=BaseU
5 hlhilset.p +˙=+U
6 hlhilset.e E=EDRingKW
7 hlhilset.g G=HGMapKW
8 hlhilset.r R=EsSet*ndxG
9 hlhilset.t ·˙=U
10 hlhilset.s S=HDMapKW
11 hlhilset.i ,˙=xV,yVSyx
12 hlhilset.k φKHLWH
13 elex KHLKV
14 13 adantr KHLWHKV
15 12 14 syl φKV
16 1 fvexi HV
17 16 mptex wHK/kDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyxV
18 nfcv _kK
19 nfcv _kH
20 nfcsb1v _kK/kDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx
21 19 20 nfmpt _kwHK/kDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx
22 fveq2 k=KLHypk=LHypK
23 22 1 eqtr4di k=KLHypk=H
24 csbeq1a k=KDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx=K/kDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx
25 23 24 mpteq12dv k=KwLHypkDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx=wHK/kDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx
26 df-hlhil HLHil=kVwLHypkDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx
27 18 21 25 26 fvmptf KVwHK/kDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyxVHLHilK=wHK/kDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx
28 15 17 27 sylancl φHLHilK=wHK/kDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx
29 15 adantr φw=WKV
30 fvexd φw=Wk=KDVecHkwV
31 fvexd φw=Wk=Ku=DVecHkwBaseuV
32 id v=Baseuv=Baseu
33 id u=DVecHkwu=DVecHkw
34 simpr φw=Wk=Kk=K
35 34 fveq2d φw=Wk=KDVecHk=DVecHK
36 simplr φw=Wk=Kw=W
37 35 36 fveq12d φw=Wk=KDVecHkw=DVecHKW
38 37 3 eqtr4di φw=Wk=KDVecHkw=U
39 33 38 sylan9eqr φw=Wk=Ku=DVecHkwu=U
40 39 fveq2d φw=Wk=Ku=DVecHkwBaseu=BaseU
41 40 4 eqtr4di φw=Wk=Ku=DVecHkwBaseu=V
42 32 41 sylan9eqr φw=Wk=Ku=DVecHkwv=Baseuv=V
43 42 opeq2d φw=Wk=Ku=DVecHkwv=BaseuBasendxv=BasendxV
44 39 adantr φw=Wk=Ku=DVecHkwv=Baseuu=U
45 44 fveq2d φw=Wk=Ku=DVecHkwv=Baseu+u=+U
46 45 5 eqtr4di φw=Wk=Ku=DVecHkwv=Baseu+u=+˙
47 46 opeq2d φw=Wk=Ku=DVecHkwv=Baseu+ndx+u=+ndx+˙
48 34 fveq2d φw=Wk=KEDRingk=EDRingK
49 48 36 fveq12d φw=Wk=KEDRingkw=EDRingKW
50 49 6 eqtr4di φw=Wk=KEDRingkw=E
51 34 fveq2d φw=Wk=KHGMapk=HGMapK
52 51 36 fveq12d φw=Wk=KHGMapkw=HGMapKW
53 52 7 eqtr4di φw=Wk=KHGMapkw=G
54 53 opeq2d φw=Wk=K*ndxHGMapkw=*ndxG
55 50 54 oveq12d φw=Wk=KEDRingkwsSet*ndxHGMapkw=EsSet*ndxG
56 55 8 eqtr4di φw=Wk=KEDRingkwsSet*ndxHGMapkw=R
57 56 opeq2d φw=Wk=KScalarndxEDRingkwsSet*ndxHGMapkw=ScalarndxR
58 57 ad2antrr φw=Wk=Ku=DVecHkwv=BaseuScalarndxEDRingkwsSet*ndxHGMapkw=ScalarndxR
59 43 47 58 tpeq123d φw=Wk=Ku=DVecHkwv=BaseuBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkw=BasendxV+ndx+˙ScalarndxR
60 44 fveq2d φw=Wk=Ku=DVecHkwv=Baseuu=U
61 60 9 eqtr4di φw=Wk=Ku=DVecHkwv=Baseuu=·˙
62 61 opeq2d φw=Wk=Ku=DVecHkwv=Baseundxu=ndx·˙
63 34 fveq2d φw=Wk=KHDMapk=HDMapK
64 63 36 fveq12d φw=Wk=KHDMapkw=HDMapKW
65 64 10 eqtr4di φw=Wk=KHDMapkw=S
66 65 ad2antrr φw=Wk=Ku=DVecHkwv=BaseuHDMapkw=S
67 66 fveq1d φw=Wk=Ku=DVecHkwv=BaseuHDMapkwy=Sy
68 67 fveq1d φw=Wk=Ku=DVecHkwv=BaseuHDMapkwyx=Syx
69 42 42 68 mpoeq123dv φw=Wk=Ku=DVecHkwv=Baseuxv,yvHDMapkwyx=xV,yVSyx
70 69 11 eqtr4di φw=Wk=Ku=DVecHkwv=Baseuxv,yvHDMapkwyx=,˙
71 70 opeq2d φw=Wk=Ku=DVecHkwv=Baseu𝑖ndxxv,yvHDMapkwyx=𝑖ndx,˙
72 62 71 preq12d φw=Wk=Ku=DVecHkwv=Baseundxu𝑖ndxxv,yvHDMapkwyx=ndx·˙𝑖ndx,˙
73 59 72 uneq12d φw=Wk=Ku=DVecHkwv=BaseuBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx=BasendxV+ndx+˙ScalarndxRndx·˙𝑖ndx,˙
74 31 73 csbied φw=Wk=Ku=DVecHkwBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx=BasendxV+ndx+˙ScalarndxRndx·˙𝑖ndx,˙
75 30 74 csbied φw=Wk=KDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx=BasendxV+ndx+˙ScalarndxRndx·˙𝑖ndx,˙
76 29 75 csbied φw=WK/kDVecHkw/uBaseu/vBasendxv+ndx+uScalarndxEDRingkwsSet*ndxHGMapkwndxu𝑖ndxxv,yvHDMapkwyx=BasendxV+ndx+˙ScalarndxRndx·˙𝑖ndx,˙
77 12 simprd φWH
78 tpex BasendxV+ndx+˙ScalarndxRV
79 prex ndx·˙𝑖ndx,˙V
80 78 79 unex BasendxV+ndx+˙ScalarndxRndx·˙𝑖ndx,˙V
81 80 a1i φBasendxV+ndx+˙ScalarndxRndx·˙𝑖ndx,˙V
82 28 76 77 81 fvmptd φHLHilKW=BasendxV+ndx+˙ScalarndxRndx·˙𝑖ndx,˙
83 2 82 eqtrid φL=BasendxV+ndx+˙ScalarndxRndx·˙𝑖ndx,˙