Metamath Proof Explorer


Theorem i1fima2

Description: Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion i1fima2 F dom 1 ¬ 0 A vol F -1 A

Proof

Step Hyp Ref Expression
1 i1fima F dom 1 F -1 A dom vol
2 1 adantr F dom 1 ¬ 0 A F -1 A dom vol
3 mblvol F -1 A dom vol vol F -1 A = vol * F -1 A
4 2 3 syl F dom 1 ¬ 0 A vol F -1 A = vol * F -1 A
5 i1ff F dom 1 F :
6 5 adantr F dom 1 ¬ 0 A F :
7 ffun F : Fun F
8 inpreima Fun F F -1 A ran F = F -1 A F -1 ran F
9 6 7 8 3syl F dom 1 ¬ 0 A F -1 A ran F = F -1 A F -1 ran F
10 cnvimass F -1 A dom F
11 cnvimarndm F -1 ran F = dom F
12 10 11 sseqtrri F -1 A F -1 ran F
13 df-ss F -1 A F -1 ran F F -1 A F -1 ran F = F -1 A
14 12 13 mpbi F -1 A F -1 ran F = F -1 A
15 9 14 eqtr2di F dom 1 ¬ 0 A F -1 A = F -1 A ran F
16 elinel1 0 A ran F 0 A
17 16 con3i ¬ 0 A ¬ 0 A ran F
18 17 adantl F dom 1 ¬ 0 A ¬ 0 A ran F
19 disjsn A ran F 0 = ¬ 0 A ran F
20 18 19 sylibr F dom 1 ¬ 0 A A ran F 0 =
21 inss2 A ran F ran F
22 5 frnd F dom 1 ran F
23 21 22 sstrid F dom 1 A ran F
24 23 adantr F dom 1 ¬ 0 A A ran F
25 reldisj A ran F A ran F 0 = A ran F 0
26 24 25 syl F dom 1 ¬ 0 A A ran F 0 = A ran F 0
27 20 26 mpbid F dom 1 ¬ 0 A A ran F 0
28 imass2 A ran F 0 F -1 A ran F F -1 0
29 27 28 syl F dom 1 ¬ 0 A F -1 A ran F F -1 0
30 15 29 eqsstrd F dom 1 ¬ 0 A F -1 A F -1 0
31 i1fima F dom 1 F -1 0 dom vol
32 31 adantr F dom 1 ¬ 0 A F -1 0 dom vol
33 mblss F -1 0 dom vol F -1 0
34 32 33 syl F dom 1 ¬ 0 A F -1 0
35 mblvol F -1 0 dom vol vol F -1 0 = vol * F -1 0
36 32 35 syl F dom 1 ¬ 0 A vol F -1 0 = vol * F -1 0
37 isi1f F dom 1 F MblFn F : ran F Fin vol F -1 0
38 37 simprbi F dom 1 F : ran F Fin vol F -1 0
39 38 simp3d F dom 1 vol F -1 0
40 39 adantr F dom 1 ¬ 0 A vol F -1 0
41 36 40 eqeltrrd F dom 1 ¬ 0 A vol * F -1 0
42 ovolsscl F -1 A F -1 0 F -1 0 vol * F -1 0 vol * F -1 A
43 30 34 41 42 syl3anc F dom 1 ¬ 0 A vol * F -1 A
44 4 43 eqeltrd F dom 1 ¬ 0 A vol F -1 A