Metamath Proof Explorer


Theorem i1fima2

Description: Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion i1fima2 Fdom1¬0AvolF-1A

Proof

Step Hyp Ref Expression
1 i1fima Fdom1F-1Adomvol
2 1 adantr Fdom1¬0AF-1Adomvol
3 mblvol F-1AdomvolvolF-1A=vol*F-1A
4 2 3 syl Fdom1¬0AvolF-1A=vol*F-1A
5 i1ff Fdom1F:
6 5 adantr Fdom1¬0AF:
7 ffun F:FunF
8 inpreima FunFF-1AranF=F-1AF-1ranF
9 6 7 8 3syl Fdom1¬0AF-1AranF=F-1AF-1ranF
10 cnvimass F-1AdomF
11 cnvimarndm F-1ranF=domF
12 10 11 sseqtrri F-1AF-1ranF
13 df-ss F-1AF-1ranFF-1AF-1ranF=F-1A
14 12 13 mpbi F-1AF-1ranF=F-1A
15 9 14 eqtr2di Fdom1¬0AF-1A=F-1AranF
16 elinel1 0AranF0A
17 16 con3i ¬0A¬0AranF
18 17 adantl Fdom1¬0A¬0AranF
19 disjsn AranF0=¬0AranF
20 18 19 sylibr Fdom1¬0AAranF0=
21 inss2 AranFranF
22 5 frnd Fdom1ranF
23 21 22 sstrid Fdom1AranF
24 23 adantr Fdom1¬0AAranF
25 reldisj AranFAranF0=AranF0
26 24 25 syl Fdom1¬0AAranF0=AranF0
27 20 26 mpbid Fdom1¬0AAranF0
28 imass2 AranF0F-1AranFF-10
29 27 28 syl Fdom1¬0AF-1AranFF-10
30 15 29 eqsstrd Fdom1¬0AF-1AF-10
31 i1fima Fdom1F-10domvol
32 31 adantr Fdom1¬0AF-10domvol
33 mblss F-10domvolF-10
34 32 33 syl Fdom1¬0AF-10
35 mblvol F-10domvolvolF-10=vol*F-10
36 32 35 syl Fdom1¬0AvolF-10=vol*F-10
37 isi1f Fdom1FMblFnF:ranFFinvolF-10
38 37 simprbi Fdom1F:ranFFinvolF-10
39 38 simp3d Fdom1volF-10
40 39 adantr Fdom1¬0AvolF-10
41 36 40 eqeltrrd Fdom1¬0Avol*F-10
42 ovolsscl F-1AF-10F-10vol*F-10vol*F-1A
43 30 34 41 42 syl3anc Fdom1¬0Avol*F-1A
44 4 43 eqeltrd Fdom1¬0AvolF-1A