Description: The imaginary unit is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | iaa | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn | |
|
2 | cnex | |
|
3 | 2 | a1i | |
4 | sqcl | |
|
5 | 4 | adantl | |
6 | ax-1cn | |
|
7 | 6 | a1i | |
8 | eqidd | |
|
9 | fconstmpt | |
|
10 | 9 | a1i | |
11 | 3 5 7 8 10 | offval2 | |
12 | zsscn | |
|
13 | 1z | |
|
14 | 2nn0 | |
|
15 | plypow | |
|
16 | 12 13 14 15 | mp3an | |
17 | 16 | a1i | |
18 | plyconst | |
|
19 | 12 13 18 | mp2an | |
20 | 19 | a1i | |
21 | zaddcl | |
|
22 | 21 | adantl | |
23 | 17 20 22 | plyadd | |
24 | 11 23 | eqeltrrd | |
25 | 24 | mptru | |
26 | 0cn | |
|
27 | sq0i | |
|
28 | 27 | oveq1d | |
29 | 0p1e1 | |
|
30 | 28 29 | eqtrdi | |
31 | eqid | |
|
32 | 1ex | |
|
33 | 30 31 32 | fvmpt | |
34 | 26 33 | ax-mp | |
35 | ax-1ne0 | |
|
36 | 34 35 | eqnetri | |
37 | ne0p | |
|
38 | 26 36 37 | mp2an | |
39 | eldifsn | |
|
40 | 25 38 39 | mpbir2an | |
41 | oveq1 | |
|
42 | i2 | |
|
43 | 41 42 | eqtrdi | |
44 | 43 | oveq1d | |
45 | neg1cn | |
|
46 | 1pneg1e0 | |
|
47 | 6 45 46 | addcomli | |
48 | 44 47 | eqtrdi | |
49 | c0ex | |
|
50 | 48 31 49 | fvmpt | |
51 | 1 50 | ax-mp | |
52 | fveq1 | |
|
53 | 52 | eqeq1d | |
54 | 53 | rspcev | |
55 | 40 51 54 | mp2an | |
56 | elaa | |
|
57 | 1 55 56 | mpbir2an | |