Metamath Proof Explorer


Theorem iaa

Description: The imaginary unit is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Assertion iaa i𝔸

Proof

Step Hyp Ref Expression
1 ax-icn i
2 cnex V
3 2 a1i V
4 sqcl zz2
5 4 adantl zz2
6 ax-1cn 1
7 6 a1i z1
8 eqidd zz2=zz2
9 fconstmpt ×1=z1
10 9 a1i ×1=z1
11 3 5 7 8 10 offval2 zz2+f×1=zz2+1
12 zsscn
13 1z 1
14 2nn0 20
15 plypow 120zz2Poly
16 12 13 14 15 mp3an zz2Poly
17 16 a1i zz2Poly
18 plyconst 1×1Poly
19 12 13 18 mp2an ×1Poly
20 19 a1i ×1Poly
21 zaddcl xyx+y
22 21 adantl xyx+y
23 17 20 22 plyadd zz2+f×1Poly
24 11 23 eqeltrrd zz2+1Poly
25 24 mptru zz2+1Poly
26 0cn 0
27 sq0i z=0z2=0
28 27 oveq1d z=0z2+1=0+1
29 0p1e1 0+1=1
30 28 29 eqtrdi z=0z2+1=1
31 eqid zz2+1=zz2+1
32 1ex 1V
33 30 31 32 fvmpt 0zz2+10=1
34 26 33 ax-mp zz2+10=1
35 ax-1ne0 10
36 34 35 eqnetri zz2+100
37 ne0p 0zz2+100zz2+10𝑝
38 26 36 37 mp2an zz2+10𝑝
39 eldifsn zz2+1Poly0𝑝zz2+1Polyzz2+10𝑝
40 25 38 39 mpbir2an zz2+1Poly0𝑝
41 oveq1 z=iz2=i2
42 i2 i2=1
43 41 42 eqtrdi z=iz2=1
44 43 oveq1d z=iz2+1=-1+1
45 neg1cn 1
46 1pneg1e0 1+-1=0
47 6 45 46 addcomli -1+1=0
48 44 47 eqtrdi z=iz2+1=0
49 c0ex 0V
50 48 31 49 fvmpt izz2+1i=0
51 1 50 ax-mp zz2+1i=0
52 fveq1 f=zz2+1fi=zz2+1i
53 52 eqeq1d f=zz2+1fi=0zz2+1i=0
54 53 rspcev zz2+1Poly0𝑝zz2+1i=0fPoly0𝑝fi=0
55 40 51 54 mp2an fPoly0𝑝fi=0
56 elaa i𝔸ifPoly0𝑝fi=0
57 1 55 56 mpbir2an i𝔸