| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elaa |
|
| 2 |
1
|
simprbi |
|
| 3 |
2
|
adantr |
|
| 4 |
|
aacn |
|
| 5 |
|
reccl |
|
| 6 |
4 5
|
sylan |
|
| 7 |
6
|
adantr |
|
| 8 |
|
zsscn |
|
| 9 |
8
|
a1i |
|
| 10 |
|
simprl |
|
| 11 |
|
eldifsn |
|
| 12 |
10 11
|
sylib |
|
| 13 |
12
|
simpld |
|
| 14 |
|
dgrcl |
|
| 15 |
13 14
|
syl |
|
| 16 |
13
|
adantr |
|
| 17 |
|
0z |
|
| 18 |
|
eqid |
|
| 19 |
18
|
coef2 |
|
| 20 |
16 17 19
|
sylancl |
|
| 21 |
|
fznn0sub |
|
| 22 |
21
|
adantl |
|
| 23 |
20 22
|
ffvelcdmd |
|
| 24 |
9 15 23
|
elplyd |
|
| 25 |
|
0cn |
|
| 26 |
|
eqid |
|
| 27 |
26
|
coefv0 |
|
| 28 |
24 27
|
syl |
|
| 29 |
23
|
zcnd |
|
| 30 |
|
eqidd |
|
| 31 |
24 15 29 30
|
coeeq2 |
|
| 32 |
31
|
fveq1d |
|
| 33 |
|
0nn0 |
|
| 34 |
|
breq1 |
|
| 35 |
|
oveq2 |
|
| 36 |
35
|
fveq2d |
|
| 37 |
34 36
|
ifbieq1d |
|
| 38 |
|
eqid |
|
| 39 |
|
fvex |
|
| 40 |
|
c0ex |
|
| 41 |
39 40
|
ifex |
|
| 42 |
37 38 41
|
fvmpt |
|
| 43 |
33 42
|
ax-mp |
|
| 44 |
15
|
nn0ge0d |
|
| 45 |
44
|
iftrued |
|
| 46 |
15
|
nn0cnd |
|
| 47 |
46
|
subid1d |
|
| 48 |
47
|
fveq2d |
|
| 49 |
45 48
|
eqtrd |
|
| 50 |
43 49
|
eqtrid |
|
| 51 |
28 32 50
|
3eqtrd |
|
| 52 |
12
|
simprd |
|
| 53 |
|
eqid |
|
| 54 |
53 18
|
dgreq0 |
|
| 55 |
13 54
|
syl |
|
| 56 |
55
|
necon3bid |
|
| 57 |
52 56
|
mpbid |
|
| 58 |
51 57
|
eqnetrd |
|
| 59 |
|
ne0p |
|
| 60 |
25 58 59
|
sylancr |
|
| 61 |
|
eldifsn |
|
| 62 |
24 60 61
|
sylanbrc |
|
| 63 |
|
oveq1 |
|
| 64 |
63
|
oveq2d |
|
| 65 |
64
|
sumeq2sdv |
|
| 66 |
|
eqid |
|
| 67 |
|
sumex |
|
| 68 |
65 66 67
|
fvmpt |
|
| 69 |
7 68
|
syl |
|
| 70 |
18
|
coef3 |
|
| 71 |
13 70
|
syl |
|
| 72 |
|
elfznn0 |
|
| 73 |
|
ffvelcdm |
|
| 74 |
71 72 73
|
syl2an |
|
| 75 |
4
|
ad2antrr |
|
| 76 |
|
expcl |
|
| 77 |
75 72 76
|
syl2an |
|
| 78 |
74 77
|
mulcld |
|
| 79 |
75 15
|
expcld |
|
| 80 |
79
|
adantr |
|
| 81 |
|
simplr |
|
| 82 |
15
|
nn0zd |
|
| 83 |
75 81 82
|
expne0d |
|
| 84 |
83
|
adantr |
|
| 85 |
78 80 84
|
divcld |
|
| 86 |
|
fveq2 |
|
| 87 |
|
oveq2 |
|
| 88 |
86 87
|
oveq12d |
|
| 89 |
88
|
oveq1d |
|
| 90 |
85 89
|
fsumrev2 |
|
| 91 |
46
|
adantr |
|
| 92 |
91
|
addlidd |
|
| 93 |
92
|
oveq1d |
|
| 94 |
93
|
fveq2d |
|
| 95 |
93
|
oveq2d |
|
| 96 |
75
|
adantr |
|
| 97 |
81
|
adantr |
|
| 98 |
|
elfznn0 |
|
| 99 |
98
|
adantl |
|
| 100 |
99
|
nn0zd |
|
| 101 |
82
|
adantr |
|
| 102 |
96 97 100 101
|
expsubd |
|
| 103 |
95 102
|
eqtrd |
|
| 104 |
94 103
|
oveq12d |
|
| 105 |
104
|
oveq1d |
|
| 106 |
79
|
adantr |
|
| 107 |
|
expcl |
|
| 108 |
75 98 107
|
syl2an |
|
| 109 |
96 97 100
|
expne0d |
|
| 110 |
106 108 109
|
divcld |
|
| 111 |
83
|
adantr |
|
| 112 |
29 110 106 111
|
divassd |
|
| 113 |
106 111
|
dividd |
|
| 114 |
113
|
oveq1d |
|
| 115 |
106 108 106 109 111
|
divdiv32d |
|
| 116 |
96 97 100
|
exprecd |
|
| 117 |
114 115 116
|
3eqtr4d |
|
| 118 |
117
|
oveq2d |
|
| 119 |
105 112 118
|
3eqtrd |
|
| 120 |
119
|
sumeq2dv |
|
| 121 |
90 120
|
eqtrd |
|
| 122 |
18 53
|
coeid2 |
|
| 123 |
13 75 122
|
syl2anc |
|
| 124 |
|
simprr |
|
| 125 |
123 124
|
eqtr3d |
|
| 126 |
125
|
oveq1d |
|
| 127 |
|
fzfid |
|
| 128 |
127 79 78 83
|
fsumdivc |
|
| 129 |
79 83
|
div0d |
|
| 130 |
126 128 129
|
3eqtr3d |
|
| 131 |
69 121 130
|
3eqtr2d |
|
| 132 |
|
fveq1 |
|
| 133 |
132
|
eqeq1d |
|
| 134 |
133
|
rspcev |
|
| 135 |
62 131 134
|
syl2anc |
|
| 136 |
|
elaa |
|
| 137 |
7 135 136
|
sylanbrc |
|
| 138 |
3 137
|
rexlimddv |
|