Step |
Hyp |
Ref |
Expression |
1 |
|
elaa |
|- ( A e. AA <-> ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) ) |
2 |
1
|
simprbi |
|- ( A e. AA -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) |
3 |
2
|
adantr |
|- ( ( A e. AA /\ A =/= 0 ) -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) |
4 |
|
aacn |
|- ( A e. AA -> A e. CC ) |
5 |
|
reccl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
6 |
4 5
|
sylan |
|- ( ( A e. AA /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
7 |
6
|
adantr |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( 1 / A ) e. CC ) |
8 |
|
zsscn |
|- ZZ C_ CC |
9 |
8
|
a1i |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ZZ C_ CC ) |
10 |
|
simprl |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> f e. ( ( Poly ` ZZ ) \ { 0p } ) ) |
11 |
|
eldifsn |
|- ( f e. ( ( Poly ` ZZ ) \ { 0p } ) <-> ( f e. ( Poly ` ZZ ) /\ f =/= 0p ) ) |
12 |
10 11
|
sylib |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( f e. ( Poly ` ZZ ) /\ f =/= 0p ) ) |
13 |
12
|
simpld |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> f e. ( Poly ` ZZ ) ) |
14 |
|
dgrcl |
|- ( f e. ( Poly ` ZZ ) -> ( deg ` f ) e. NN0 ) |
15 |
13 14
|
syl |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( deg ` f ) e. NN0 ) |
16 |
13
|
adantr |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> f e. ( Poly ` ZZ ) ) |
17 |
|
0z |
|- 0 e. ZZ |
18 |
|
eqid |
|- ( coeff ` f ) = ( coeff ` f ) |
19 |
18
|
coef2 |
|- ( ( f e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> ( coeff ` f ) : NN0 --> ZZ ) |
20 |
16 17 19
|
sylancl |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( coeff ` f ) : NN0 --> ZZ ) |
21 |
|
fznn0sub |
|- ( k e. ( 0 ... ( deg ` f ) ) -> ( ( deg ` f ) - k ) e. NN0 ) |
22 |
21
|
adantl |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( deg ` f ) - k ) e. NN0 ) |
23 |
20 22
|
ffvelrnd |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) e. ZZ ) |
24 |
9 15 23
|
elplyd |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( Poly ` ZZ ) ) |
25 |
|
0cn |
|- 0 e. CC |
26 |
|
eqid |
|- ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) = ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) |
27 |
26
|
coefv0 |
|- ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( Poly ` ZZ ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` 0 ) = ( ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) ` 0 ) ) |
28 |
24 27
|
syl |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` 0 ) = ( ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) ` 0 ) ) |
29 |
23
|
zcnd |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) e. CC ) |
30 |
|
eqidd |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) |
31 |
24 15 29 30
|
coeeq2 |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) = ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) ) |
32 |
31
|
fveq1d |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) ` 0 ) ) |
33 |
|
0nn0 |
|- 0 e. NN0 |
34 |
|
breq1 |
|- ( k = 0 -> ( k <_ ( deg ` f ) <-> 0 <_ ( deg ` f ) ) ) |
35 |
|
oveq2 |
|- ( k = 0 -> ( ( deg ` f ) - k ) = ( ( deg ` f ) - 0 ) ) |
36 |
35
|
fveq2d |
|- ( k = 0 -> ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) = ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) ) |
37 |
34 36
|
ifbieq1d |
|- ( k = 0 -> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) = if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) ) |
38 |
|
eqid |
|- ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) = ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) |
39 |
|
fvex |
|- ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) e. _V |
40 |
|
c0ex |
|- 0 e. _V |
41 |
39 40
|
ifex |
|- if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) e. _V |
42 |
37 38 41
|
fvmpt |
|- ( 0 e. NN0 -> ( ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) ` 0 ) = if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) ) |
43 |
33 42
|
ax-mp |
|- ( ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) ` 0 ) = if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) |
44 |
15
|
nn0ge0d |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> 0 <_ ( deg ` f ) ) |
45 |
44
|
iftrued |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) = ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) ) |
46 |
15
|
nn0cnd |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( deg ` f ) e. CC ) |
47 |
46
|
subid1d |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( deg ` f ) - 0 ) = ( deg ` f ) ) |
48 |
47
|
fveq2d |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) = ( ( coeff ` f ) ` ( deg ` f ) ) ) |
49 |
45 48
|
eqtrd |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) = ( ( coeff ` f ) ` ( deg ` f ) ) ) |
50 |
43 49
|
eqtrid |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) ` 0 ) = ( ( coeff ` f ) ` ( deg ` f ) ) ) |
51 |
28 32 50
|
3eqtrd |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` 0 ) = ( ( coeff ` f ) ` ( deg ` f ) ) ) |
52 |
12
|
simprd |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> f =/= 0p ) |
53 |
|
eqid |
|- ( deg ` f ) = ( deg ` f ) |
54 |
53 18
|
dgreq0 |
|- ( f e. ( Poly ` ZZ ) -> ( f = 0p <-> ( ( coeff ` f ) ` ( deg ` f ) ) = 0 ) ) |
55 |
13 54
|
syl |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( f = 0p <-> ( ( coeff ` f ) ` ( deg ` f ) ) = 0 ) ) |
56 |
55
|
necon3bid |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( f =/= 0p <-> ( ( coeff ` f ) ` ( deg ` f ) ) =/= 0 ) ) |
57 |
52 56
|
mpbid |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( coeff ` f ) ` ( deg ` f ) ) =/= 0 ) |
58 |
51 57
|
eqnetrd |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` 0 ) =/= 0 ) |
59 |
|
ne0p |
|- ( ( 0 e. CC /\ ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` 0 ) =/= 0 ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) =/= 0p ) |
60 |
25 58 59
|
sylancr |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) =/= 0p ) |
61 |
|
eldifsn |
|- ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) <-> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( Poly ` ZZ ) /\ ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) =/= 0p ) ) |
62 |
24 60 61
|
sylanbrc |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) ) |
63 |
|
oveq1 |
|- ( z = ( 1 / A ) -> ( z ^ k ) = ( ( 1 / A ) ^ k ) ) |
64 |
63
|
oveq2d |
|- ( z = ( 1 / A ) -> ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) |
65 |
64
|
sumeq2sdv |
|- ( z = ( 1 / A ) -> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) |
66 |
|
eqid |
|- ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) |
67 |
|
sumex |
|- sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) e. _V |
68 |
65 66 67
|
fvmpt |
|- ( ( 1 / A ) e. CC -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) |
69 |
7 68
|
syl |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) |
70 |
18
|
coef3 |
|- ( f e. ( Poly ` ZZ ) -> ( coeff ` f ) : NN0 --> CC ) |
71 |
13 70
|
syl |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( coeff ` f ) : NN0 --> CC ) |
72 |
|
elfznn0 |
|- ( n e. ( 0 ... ( deg ` f ) ) -> n e. NN0 ) |
73 |
|
ffvelrn |
|- ( ( ( coeff ` f ) : NN0 --> CC /\ n e. NN0 ) -> ( ( coeff ` f ) ` n ) e. CC ) |
74 |
71 72 73
|
syl2an |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( ( coeff ` f ) ` n ) e. CC ) |
75 |
4
|
ad2antrr |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> A e. CC ) |
76 |
|
expcl |
|- ( ( A e. CC /\ n e. NN0 ) -> ( A ^ n ) e. CC ) |
77 |
75 72 76
|
syl2an |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ n ) e. CC ) |
78 |
74 77
|
mulcld |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) e. CC ) |
79 |
75 15
|
expcld |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( A ^ ( deg ` f ) ) e. CC ) |
80 |
79
|
adantr |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( deg ` f ) ) e. CC ) |
81 |
|
simplr |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> A =/= 0 ) |
82 |
15
|
nn0zd |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( deg ` f ) e. ZZ ) |
83 |
75 81 82
|
expne0d |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( A ^ ( deg ` f ) ) =/= 0 ) |
84 |
83
|
adantr |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( deg ` f ) ) =/= 0 ) |
85 |
78 80 84
|
divcld |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) e. CC ) |
86 |
|
fveq2 |
|- ( n = ( ( 0 + ( deg ` f ) ) - k ) -> ( ( coeff ` f ) ` n ) = ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) ) |
87 |
|
oveq2 |
|- ( n = ( ( 0 + ( deg ` f ) ) - k ) -> ( A ^ n ) = ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) |
88 |
86 87
|
oveq12d |
|- ( n = ( ( 0 + ( deg ` f ) ) - k ) -> ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) = ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) ) |
89 |
88
|
oveq1d |
|- ( n = ( ( 0 + ( deg ` f ) ) - k ) -> ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = ( ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) / ( A ^ ( deg ` f ) ) ) ) |
90 |
85 89
|
fsumrev2 |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) / ( A ^ ( deg ` f ) ) ) ) |
91 |
46
|
adantr |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( deg ` f ) e. CC ) |
92 |
91
|
addid2d |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( 0 + ( deg ` f ) ) = ( deg ` f ) ) |
93 |
92
|
oveq1d |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( 0 + ( deg ` f ) ) - k ) = ( ( deg ` f ) - k ) ) |
94 |
93
|
fveq2d |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) = ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) ) |
95 |
93
|
oveq2d |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) = ( A ^ ( ( deg ` f ) - k ) ) ) |
96 |
75
|
adantr |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> A e. CC ) |
97 |
81
|
adantr |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> A =/= 0 ) |
98 |
|
elfznn0 |
|- ( k e. ( 0 ... ( deg ` f ) ) -> k e. NN0 ) |
99 |
98
|
adantl |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> k e. NN0 ) |
100 |
99
|
nn0zd |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> k e. ZZ ) |
101 |
82
|
adantr |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( deg ` f ) e. ZZ ) |
102 |
96 97 100 101
|
expsubd |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( ( deg ` f ) - k ) ) = ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) ) |
103 |
95 102
|
eqtrd |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) = ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) ) |
104 |
94 103
|
oveq12d |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) ) ) |
105 |
104
|
oveq1d |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) / ( A ^ ( deg ` f ) ) ) = ( ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) ) / ( A ^ ( deg ` f ) ) ) ) |
106 |
79
|
adantr |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( deg ` f ) ) e. CC ) |
107 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
108 |
75 98 107
|
syl2an |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ k ) e. CC ) |
109 |
96 97 100
|
expne0d |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ k ) =/= 0 ) |
110 |
106 108 109
|
divcld |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) e. CC ) |
111 |
83
|
adantr |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( deg ` f ) ) =/= 0 ) |
112 |
29 110 106 111
|
divassd |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) ) / ( A ^ ( deg ` f ) ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) / ( A ^ ( deg ` f ) ) ) ) ) |
113 |
106 111
|
dividd |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( A ^ ( deg ` f ) ) / ( A ^ ( deg ` f ) ) ) = 1 ) |
114 |
113
|
oveq1d |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( A ^ ( deg ` f ) ) / ( A ^ ( deg ` f ) ) ) / ( A ^ k ) ) = ( 1 / ( A ^ k ) ) ) |
115 |
106 108 106 109 111
|
divdiv32d |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) / ( A ^ ( deg ` f ) ) ) = ( ( ( A ^ ( deg ` f ) ) / ( A ^ ( deg ` f ) ) ) / ( A ^ k ) ) ) |
116 |
96 97 100
|
exprecd |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( 1 / A ) ^ k ) = ( 1 / ( A ^ k ) ) ) |
117 |
114 115 116
|
3eqtr4d |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) / ( A ^ ( deg ` f ) ) ) = ( ( 1 / A ) ^ k ) ) |
118 |
117
|
oveq2d |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) / ( A ^ ( deg ` f ) ) ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) |
119 |
105 112 118
|
3eqtrd |
|- ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) / ( A ^ ( deg ` f ) ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) |
120 |
119
|
sumeq2dv |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) / ( A ^ ( deg ` f ) ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) |
121 |
90 120
|
eqtrd |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) |
122 |
18 53
|
coeid2 |
|- ( ( f e. ( Poly ` ZZ ) /\ A e. CC ) -> ( f ` A ) = sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) ) |
123 |
13 75 122
|
syl2anc |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( f ` A ) = sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) ) |
124 |
|
simprr |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( f ` A ) = 0 ) |
125 |
123 124
|
eqtr3d |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) = 0 ) |
126 |
125
|
oveq1d |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = ( 0 / ( A ^ ( deg ` f ) ) ) ) |
127 |
|
fzfid |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( 0 ... ( deg ` f ) ) e. Fin ) |
128 |
127 79 78 83
|
fsumdivc |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) ) |
129 |
79 83
|
div0d |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( 0 / ( A ^ ( deg ` f ) ) ) = 0 ) |
130 |
126 128 129
|
3eqtr3d |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = 0 ) |
131 |
69 121 130
|
3eqtr2d |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) = 0 ) |
132 |
|
fveq1 |
|- ( g = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) -> ( g ` ( 1 / A ) ) = ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) ) |
133 |
132
|
eqeq1d |
|- ( g = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) -> ( ( g ` ( 1 / A ) ) = 0 <-> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) = 0 ) ) |
134 |
133
|
rspcev |
|- ( ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) = 0 ) -> E. g e. ( ( Poly ` ZZ ) \ { 0p } ) ( g ` ( 1 / A ) ) = 0 ) |
135 |
62 131 134
|
syl2anc |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> E. g e. ( ( Poly ` ZZ ) \ { 0p } ) ( g ` ( 1 / A ) ) = 0 ) |
136 |
|
elaa |
|- ( ( 1 / A ) e. AA <-> ( ( 1 / A ) e. CC /\ E. g e. ( ( Poly ` ZZ ) \ { 0p } ) ( g ` ( 1 / A ) ) = 0 ) ) |
137 |
7 135 136
|
sylanbrc |
|- ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( 1 / A ) e. AA ) |
138 |
3 137
|
rexlimddv |
|- ( ( A e. AA /\ A =/= 0 ) -> ( 1 / A ) e. AA ) |