| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|
| 2 |
1
|
a1i |
|
| 3 |
|
3nn0 |
|
| 4 |
3
|
a1i |
|
| 5 |
4
|
nn0red |
|
| 6 |
4
|
nn0ge0d |
|
| 7 |
5 6
|
resqrtcld |
|
| 8 |
7
|
recnd |
|
| 9 |
2 8
|
absmuld |
|
| 10 |
|
absi |
|
| 11 |
7
|
mptru |
|
| 12 |
|
3re |
|
| 13 |
6
|
mptru |
|
| 14 |
|
sqrtge0 |
|
| 15 |
12 13 14
|
mp2an |
|
| 16 |
|
absid |
|
| 17 |
11 15 16
|
mp2an |
|
| 18 |
10 17
|
oveq12i |
|
| 19 |
8
|
mptru |
|
| 20 |
19
|
mullidi |
|
| 21 |
18 20
|
eqtri |
|
| 22 |
9 21
|
eqtrdi |
|
| 23 |
22
|
oveq2d |
|
| 24 |
4
|
nn0cnd |
|
| 25 |
|
3ne0 |
|
| 26 |
|
cnsqrt00 |
|
| 27 |
26
|
necon3bid |
|
| 28 |
27
|
biimpar |
|
| 29 |
24 25 28
|
sylancl |
|
| 30 |
29
|
mptru |
|
| 31 |
1 19 30
|
divcan4i |
|
| 32 |
23 31
|
eqtrdi |
|
| 33 |
|
1nn0 |
|
| 34 |
33
|
a1i |
|
| 35 |
34
|
nn0constr |
|
| 36 |
4
|
nn0constr |
|
| 37 |
35
|
constrnegcl |
|
| 38 |
2 8
|
mulcld |
|
| 39 |
|
1nn |
|
| 40 |
|
nnneneg |
|
| 41 |
39 40
|
mp1i |
|
| 42 |
|
1cnd |
|
| 43 |
42 38
|
subcld |
|
| 44 |
43
|
abscld |
|
| 45 |
|
2re |
|
| 46 |
45
|
a1i |
|
| 47 |
43
|
absge0d |
|
| 48 |
|
0le2 |
|
| 49 |
48
|
a1i |
|
| 50 |
|
1red |
|
| 51 |
7 50
|
pythagreim |
|
| 52 |
24
|
sqsqrtd |
|
| 53 |
|
sq1 |
|
| 54 |
53
|
a1i |
|
| 55 |
52 54
|
oveq12d |
|
| 56 |
|
3p1e4 |
|
| 57 |
|
sq2 |
|
| 58 |
56 57
|
eqtr4i |
|
| 59 |
55 58
|
eqtrdi |
|
| 60 |
51 59
|
eqtrd |
|
| 61 |
44 46 47 49 60
|
sq11d |
|
| 62 |
38 42
|
abssubd |
|
| 63 |
5 50
|
resubcld |
|
| 64 |
|
3m1e2 |
|
| 65 |
49 64
|
breqtrrdi |
|
| 66 |
63 65
|
absidd |
|
| 67 |
66 64
|
eqtrdi |
|
| 68 |
61 62 67
|
3eqtr4d |
|
| 69 |
42
|
negcld |
|
| 70 |
69 38
|
subcld |
|
| 71 |
70
|
abscld |
|
| 72 |
70
|
absge0d |
|
| 73 |
50
|
renegcld |
|
| 74 |
7 73
|
pythagreim |
|
| 75 |
|
neg1sqe1 |
|
| 76 |
75
|
a1i |
|
| 77 |
52 76
|
oveq12d |
|
| 78 |
77 58
|
eqtrdi |
|
| 79 |
74 78
|
eqtrd |
|
| 80 |
71 46 72 49 79
|
sq11d |
|
| 81 |
38 69
|
abssubd |
|
| 82 |
80 81 67
|
3eqtr4d |
|
| 83 |
35 36 35 37 36 35 38 41 68 82
|
constrcccl |
|
| 84 |
|
ine0 |
|
| 85 |
84
|
a1i |
|
| 86 |
2 8 85 29
|
mulne0d |
|
| 87 |
83 86
|
constrdircl |
|
| 88 |
32 87
|
eqeltrrd |
|
| 89 |
88
|
mptru |
|