Metamath Proof Explorer


Theorem idinside

Description: Law for finding a point inside a segment. Theorem 4.19 of Schwabhauser p. 38. (Contributed by Scott Fenton, 7-Oct-2013)

Ref Expression
Assertion idinside NA𝔼NB𝔼NC𝔼ND𝔼NCBtwnABACCgrADBCCgrBDC=D

Proof

Step Hyp Ref Expression
1 simp1 NA𝔼NB𝔼NC𝔼ND𝔼NN
2 simp3l NA𝔼NB𝔼NC𝔼ND𝔼NC𝔼N
3 simp3r NA𝔼NB𝔼NC𝔼ND𝔼ND𝔼N
4 cgrid2 NC𝔼NC𝔼ND𝔼NCCCgrCDC=D
5 1 2 2 3 4 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NCCCgrCDC=D
6 simp2l NA𝔼NB𝔼NC𝔼ND𝔼NA𝔼N
7 axbtwnid NC𝔼NA𝔼NCBtwnAAC=A
8 1 2 6 7 syl3anc NA𝔼NB𝔼NC𝔼ND𝔼NCBtwnAAC=A
9 opeq1 C=ACC=AC
10 opeq1 C=ACD=AD
11 9 10 breq12d C=ACCCgrCDACCgrAD
12 11 imbi1d C=ACCCgrCDC=DACCgrADC=D
13 12 biimpcd CCCgrCDC=DC=AACCgrADC=D
14 ax-1 C=DBCCgrBDC=D
15 13 14 syl8 CCCgrCDC=DC=AACCgrADBCCgrBDC=D
16 5 8 15 sylsyld NA𝔼NB𝔼NC𝔼ND𝔼NCBtwnAAACCgrADBCCgrBDC=D
17 16 3impd NA𝔼NB𝔼NC𝔼ND𝔼NCBtwnAAACCgrADBCCgrBDC=D
18 opeq2 A=BAA=AB
19 18 breq2d A=BCBtwnAACBtwnAB
20 19 3anbi1d A=BCBtwnAAACCgrADBCCgrBDCBtwnABACCgrADBCCgrBD
21 20 imbi1d A=BCBtwnAAACCgrADBCCgrBDC=DCBtwnABACCgrADBCCgrBDC=D
22 17 21 imbitrid A=BNA𝔼NB𝔼NC𝔼ND𝔼NCBtwnABACCgrADBCCgrBDC=D
23 simpr1 ABNA𝔼NB𝔼NC𝔼ND𝔼NN
24 simpr2l ABNA𝔼NB𝔼NC𝔼ND𝔼NA𝔼N
25 simpr2r ABNA𝔼NB𝔼NC𝔼ND𝔼NB𝔼N
26 simpr3l ABNA𝔼NB𝔼NC𝔼ND𝔼NC𝔼N
27 btwncolinear1 NA𝔼NB𝔼NC𝔼NCBtwnABAColinearBC
28 23 24 25 26 27 syl13anc ABNA𝔼NB𝔼NC𝔼ND𝔼NCBtwnABAColinearBC
29 idd ABNA𝔼NB𝔼NC𝔼ND𝔼NACCgrADACCgrAD
30 idd ABNA𝔼NB𝔼NC𝔼ND𝔼NBCCgrBDBCCgrBD
31 28 29 30 3anim123d ABNA𝔼NB𝔼NC𝔼ND𝔼NCBtwnABACCgrADBCCgrBDAColinearBCACCgrADBCCgrBD
32 simp1 AColinearBCACCgrADBCCgrBDAColinearBC
33 32 anim2i ABAColinearBCACCgrADBCCgrBDABAColinearBC
34 3simpc AColinearBCACCgrADBCCgrBDACCgrADBCCgrBD
35 34 adantl ABAColinearBCACCgrADBCCgrBDACCgrADBCCgrBD
36 33 35 jca ABAColinearBCACCgrADBCCgrBDABAColinearBCACCgrADBCCgrBD
37 lineid NA𝔼NB𝔼NC𝔼ND𝔼NABAColinearBCACCgrADBCCgrBDC=D
38 36 37 syl5 NA𝔼NB𝔼NC𝔼ND𝔼NABAColinearBCACCgrADBCCgrBDC=D
39 38 expd NA𝔼NB𝔼NC𝔼ND𝔼NABAColinearBCACCgrADBCCgrBDC=D
40 39 impcom ABNA𝔼NB𝔼NC𝔼ND𝔼NAColinearBCACCgrADBCCgrBDC=D
41 31 40 syld ABNA𝔼NB𝔼NC𝔼ND𝔼NCBtwnABACCgrADBCCgrBDC=D
42 41 ex ABNA𝔼NB𝔼NC𝔼ND𝔼NCBtwnABACCgrADBCCgrBDC=D
43 22 42 pm2.61ine NA𝔼NB𝔼NC𝔼ND𝔼NCBtwnABACCgrADBCCgrBDC=D