Metamath Proof Explorer


Theorem idomodle

Description: Limit on the number of N -th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses idomodle.g G=mulGrpR𝑠UnitR
idomodle.b B=BaseG
idomodle.o O=odG
Assertion idomodle RIDomnNxB|OxNN

Proof

Step Hyp Ref Expression
1 idomodle.g G=mulGrpR𝑠UnitR
2 idomodle.b B=BaseG
3 idomodle.o O=odG
4 2 fvexi BV
5 4 rabex xB|OxNV
6 hashxrcl xB|OxNVxB|OxN*
7 5 6 mp1i RIDomnNxB|OxN*
8 fvex BaseRV
9 8 rabex xBaseR|NmulGrpRx=1RV
10 hashxrcl xBaseR|NmulGrpRx=1RVxBaseR|NmulGrpRx=1R*
11 9 10 mp1i RIDomnNxBaseR|NmulGrpRx=1R*
12 nnre NN
13 12 rexrd NN*
14 13 adantl RIDomnNN*
15 isidom RIDomnRCRingRDomn
16 15 simplbi RIDomnRCRing
17 16 adantr RIDomnNRCRing
18 crngring RCRingRRing
19 17 18 syl RIDomnNRRing
20 19 adantr RIDomnNxBRRing
21 eqid UnitR=UnitR
22 21 1 unitgrp RRingGGrp
23 20 22 syl RIDomnNxBGGrp
24 simpr RIDomnNxBxB
25 nnz NN
26 25 ad2antlr RIDomnNxBN
27 eqid G=G
28 eqid 0G=0G
29 2 3 27 28 oddvds GGrpxBNOxNNGx=0G
30 23 24 26 29 syl3anc RIDomnNxBOxNNGx=0G
31 eqid mulGrpR=mulGrpR
32 21 31 unitsubm RRingUnitRSubMndmulGrpR
33 20 32 syl RIDomnNxBUnitRSubMndmulGrpR
34 nnnn0 NN0
35 34 ad2antlr RIDomnNxBN0
36 21 1 unitgrpbas UnitR=BaseG
37 2 36 eqtr4i B=UnitR
38 24 37 eleqtrdi RIDomnNxBxUnitR
39 eqid mulGrpR=mulGrpR
40 39 1 27 submmulg UnitRSubMndmulGrpRN0xUnitRNmulGrpRx=NGx
41 33 35 38 40 syl3anc RIDomnNxBNmulGrpRx=NGx
42 eqid 1R=1R
43 21 1 42 unitgrpid RRing1R=0G
44 20 43 syl RIDomnNxB1R=0G
45 41 44 eqeq12d RIDomnNxBNmulGrpRx=1RNGx=0G
46 30 45 bitr4d RIDomnNxBOxNNmulGrpRx=1R
47 46 rabbidva RIDomnNxB|OxN=xB|NmulGrpRx=1R
48 47 fveq2d RIDomnNxB|OxN=xB|NmulGrpRx=1R
49 eqid BaseR=BaseR
50 49 37 unitss BBaseR
51 rabss2 BBaseRxB|NmulGrpRx=1RxBaseR|NmulGrpRx=1R
52 50 51 mp1i RIDomnNxB|NmulGrpRx=1RxBaseR|NmulGrpRx=1R
53 ssdomg xBaseR|NmulGrpRx=1RVxB|NmulGrpRx=1RxBaseR|NmulGrpRx=1RxB|NmulGrpRx=1RxBaseR|NmulGrpRx=1R
54 9 52 53 mpsyl RIDomnNxB|NmulGrpRx=1RxBaseR|NmulGrpRx=1R
55 hashdomi xB|NmulGrpRx=1RxBaseR|NmulGrpRx=1RxB|NmulGrpRx=1RxBaseR|NmulGrpRx=1R
56 54 55 syl RIDomnNxB|NmulGrpRx=1RxBaseR|NmulGrpRx=1R
57 48 56 eqbrtrd RIDomnNxB|OxNxBaseR|NmulGrpRx=1R
58 simpl RIDomnNRIDomn
59 49 42 ringidcl RRing1RBaseR
60 19 59 syl RIDomnN1RBaseR
61 simpr RIDomnNN
62 49 39 idomrootle RIDomn1RBaseRNxBaseR|NmulGrpRx=1RN
63 58 60 61 62 syl3anc RIDomnNxBaseR|NmulGrpRx=1RN
64 7 11 14 57 63 xrletrd RIDomnNxB|OxNN