Metamath Proof Explorer


Theorem iinfsubc

Description: Indexed intersection of subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Hypotheses iinfsubc.1 φ A
iinfsubc.2 φ x A H Subcat C
iinfsubc.3 φ K = y x A dom H x A H y
Assertion iinfsubc φ K Subcat C

Proof

Step Hyp Ref Expression
1 iinfsubc.1 φ A
2 iinfsubc.2 φ x A H Subcat C
3 iinfsubc.3 φ K = y x A dom H x A H y
4 eqid Hom 𝑓 C = Hom 𝑓 C
5 2 4 subcssc φ x A H cat Hom 𝑓 C
6 1 5 3 iinfssc φ K cat Hom 𝑓 C
7 2 adantr φ x A a dom dom H H Subcat C
8 eqidd φ x A dom dom H = dom dom H
9 2 8 subcfn φ x A H Fn dom dom H × dom dom H
10 9 adantr φ x A a dom dom H H Fn dom dom H × dom dom H
11 simpr φ x A a dom dom H a dom dom H
12 eqid Id C = Id C
13 7 10 11 12 subcidcl φ x A a dom dom H Id C a a H a
14 13 ex φ x A a dom dom H Id C a a H a
15 14 ralimdva φ x A a dom dom H x A Id C a a H a
16 eliin a V a x A dom dom H x A a dom dom H
17 16 elv a x A dom dom H x A a dom dom H
18 fvex Id C a V
19 eliin Id C a V Id C a x A a H a x A Id C a a H a
20 18 19 ax-mp Id C a x A a H a x A Id C a a H a
21 15 17 20 3imtr4g φ a x A dom dom H Id C a x A a H a
22 21 imp φ a x A dom dom H Id C a x A a H a
23 1 adantr φ a x A dom dom H A
24 5 adantlr φ a x A dom dom H x A H cat Hom 𝑓 C
25 3 adantr φ a x A dom dom H K = y x A dom H x A H y
26 eqidd φ a x A dom dom H x A dom dom H = dom dom H
27 nfv x φ
28 nfii1 _ x x A dom dom H
29 28 nfcri x a x A dom dom H
30 27 29 nfan x φ a x A dom dom H
31 simpr φ a x A dom dom H a x A dom dom H
32 23 24 25 26 30 31 31 iinfssclem3 φ a x A dom dom H a K a = x A a H a
33 22 32 eleqtrrd φ a x A dom dom H Id C a a K a
34 simprl φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c f a K b
35 1 ad2antrr φ a x A dom dom H b x A dom dom H c x A dom dom H A
36 24 adantlr φ a x A dom dom H b x A dom dom H c x A dom dom H x A H cat Hom 𝑓 C
37 3 ad2antrr φ a x A dom dom H b x A dom dom H c x A dom dom H K = y x A dom H x A H y
38 eqidd φ a x A dom dom H b x A dom dom H c x A dom dom H x A dom dom H = dom dom H
39 28 nfcri x b x A dom dom H
40 28 nfcri x c x A dom dom H
41 39 40 nfan x b x A dom dom H c x A dom dom H
42 30 41 nfan x φ a x A dom dom H b x A dom dom H c x A dom dom H
43 31 adantr φ a x A dom dom H b x A dom dom H c x A dom dom H a x A dom dom H
44 simprl φ a x A dom dom H b x A dom dom H c x A dom dom H b x A dom dom H
45 35 36 37 38 42 43 44 iinfssclem3 φ a x A dom dom H b x A dom dom H c x A dom dom H a K b = x A a H b
46 45 adantr φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c a K b = x A a H b
47 34 46 eleqtrd φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c f x A a H b
48 simprr φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c g b K c
49 simprr φ a x A dom dom H b x A dom dom H c x A dom dom H c x A dom dom H
50 35 36 37 38 42 44 49 iinfssclem3 φ a x A dom dom H b x A dom dom H c x A dom dom H b K c = x A b H c
51 50 adantr φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c b K c = x A b H c
52 48 51 eleqtrd φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c g x A b H c
53 47 52 jca φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c f x A a H b g x A b H c
54 nfii1 _ x x A a H b
55 54 nfcri x f x A a H b
56 nfii1 _ x x A b H c
57 56 nfcri x g x A b H c
58 55 57 nfan x f x A a H b g x A b H c
59 42 58 nfan x φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c
60 2 ad5ant15 φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A H Subcat C
61 9 ad5ant15 φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A H Fn dom dom H × dom dom H
62 iinss2 x A x A dom dom H dom dom H
63 62 adantl φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A x A dom dom H dom dom H
64 43 ad2antrr φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A a x A dom dom H
65 63 64 sseldd φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A a dom dom H
66 eqid comp C = comp C
67 44 ad2antrr φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A b x A dom dom H
68 63 67 sseldd φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A b dom dom H
69 49 ad2antrr φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A c x A dom dom H
70 63 69 sseldd φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A c dom dom H
71 iinss2 x A x A a H b a H b
72 71 adantl φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A x A a H b a H b
73 simplrl φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A f x A a H b
74 72 73 sseldd φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A f a H b
75 iinss2 x A x A b H c b H c
76 75 adantl φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A x A b H c b H c
77 simplrr φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A g x A b H c
78 76 77 sseldd φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A g b H c
79 60 61 65 66 68 70 74 78 subccocl φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A g a b comp C c f a H c
80 59 79 ralrimia φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c x A g a b comp C c f a H c
81 ovex g a b comp C c f V
82 eliin g a b comp C c f V g a b comp C c f x A a H c x A g a b comp C c f a H c
83 81 82 ax-mp g a b comp C c f x A a H c x A g a b comp C c f a H c
84 80 83 sylibr φ a x A dom dom H b x A dom dom H c x A dom dom H f x A a H b g x A b H c g a b comp C c f x A a H c
85 53 84 syldan φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c g a b comp C c f x A a H c
86 35 36 37 38 42 43 49 iinfssclem3 φ a x A dom dom H b x A dom dom H c x A dom dom H a K c = x A a H c
87 86 adantr φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c a K c = x A a H c
88 85 87 eleqtrrd φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c g a b comp C c f a K c
89 88 ralrimivva φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c g a b comp C c f a K c
90 89 ralrimivva φ a x A dom dom H b x A dom dom H c x A dom dom H f a K b g b K c g a b comp C c f a K c
91 33 90 jca φ a x A dom dom H Id C a a K a b x A dom dom H c x A dom dom H f a K b g b K c g a b comp C c f a K c
92 91 ralrimiva φ a x A dom dom H Id C a a K a b x A dom dom H c x A dom dom H f a K b g b K c g a b comp C c f a K c
93 n0 A x x A
94 1 93 sylib φ x x A
95 subcrcl H Subcat C C Cat
96 2 95 syl φ x A C Cat
97 94 96 exlimddv φ C Cat
98 1 5 3 8 27 iinfssclem2 φ K Fn x A dom dom H × x A dom dom H
99 4 12 66 97 98 issubc2 φ K Subcat C K cat Hom 𝑓 C a x A dom dom H Id C a a K a b x A dom dom H c x A dom dom H f a K b g b K c g a b comp C c f a K c
100 6 92 99 mpbir2and φ K Subcat C